Adaptive GMRES(m) for the Electromagnetic Scattering Problem
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100191 |
Resumo: | ABSTRACT In this article, an adaptive version of the restarted GMRES (GMRES(m)) is introduced for the resolution of the finite difference approximation of the Helmholtz equation. It has been observed that the choice of the restart parameter m strongly affects the convergence of standard GMRES(m). To overcome this problem, the GMRES(m) is formulated as a control problem in order to adaptively combine two strategies: a) the appropriate variation of the restarted parameter m, if a stagnation in the convergence is detected; and b) the augmentation of the search subspace using vectors obtained at previous cycles. The proposal is compared with similar iterative methods of the literature based on standard GMRES(m) with fixed parameters. Numerical results for selected matrices suggest that the switching adaptive proposal method could overcome the stagnation observed in standard methods, and even improve the performance in terms of computational time and memory requirements. |
id |
SBMAC-1_ba343b7c9f65f7fac0b12d687a96a58e |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512020000100191 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
Adaptive GMRES(m) for the Electromagnetic Scattering Problemiterative methodadaptive GMRES(m)electromagnetic scatteringABSTRACT In this article, an adaptive version of the restarted GMRES (GMRES(m)) is introduced for the resolution of the finite difference approximation of the Helmholtz equation. It has been observed that the choice of the restart parameter m strongly affects the convergence of standard GMRES(m). To overcome this problem, the GMRES(m) is formulated as a control problem in order to adaptively combine two strategies: a) the appropriate variation of the restarted parameter m, if a stagnation in the convergence is detected; and b) the augmentation of the search subspace using vectors obtained at previous cycles. The proposal is compared with similar iterative methods of the literature based on standard GMRES(m) with fixed parameters. Numerical results for selected matrices suggest that the switching adaptive proposal method could overcome the stagnation observed in standard methods, and even improve the performance in terms of computational time and memory requirements.Sociedade Brasileira de Matemática Aplicada e Computacional2020-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100191TEMA (São Carlos) v.21 n.1 2020reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2020.021.01.00191info:eu-repo/semantics/openAccessESPÍNOLA,G. E.CABRAL,J. C.SCHAERER,C. E.eng2020-04-28T00:00:00Zoai:scielo:S2179-84512020000100191Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2020-04-28T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
Adaptive GMRES(m) for the Electromagnetic Scattering Problem |
title |
Adaptive GMRES(m) for the Electromagnetic Scattering Problem |
spellingShingle |
Adaptive GMRES(m) for the Electromagnetic Scattering Problem ESPÍNOLA,G. E. iterative method adaptive GMRES(m) electromagnetic scattering |
title_short |
Adaptive GMRES(m) for the Electromagnetic Scattering Problem |
title_full |
Adaptive GMRES(m) for the Electromagnetic Scattering Problem |
title_fullStr |
Adaptive GMRES(m) for the Electromagnetic Scattering Problem |
title_full_unstemmed |
Adaptive GMRES(m) for the Electromagnetic Scattering Problem |
title_sort |
Adaptive GMRES(m) for the Electromagnetic Scattering Problem |
author |
ESPÍNOLA,G. E. |
author_facet |
ESPÍNOLA,G. E. CABRAL,J. C. SCHAERER,C. E. |
author_role |
author |
author2 |
CABRAL,J. C. SCHAERER,C. E. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
ESPÍNOLA,G. E. CABRAL,J. C. SCHAERER,C. E. |
dc.subject.por.fl_str_mv |
iterative method adaptive GMRES(m) electromagnetic scattering |
topic |
iterative method adaptive GMRES(m) electromagnetic scattering |
description |
ABSTRACT In this article, an adaptive version of the restarted GMRES (GMRES(m)) is introduced for the resolution of the finite difference approximation of the Helmholtz equation. It has been observed that the choice of the restart parameter m strongly affects the convergence of standard GMRES(m). To overcome this problem, the GMRES(m) is formulated as a control problem in order to adaptively combine two strategies: a) the appropriate variation of the restarted parameter m, if a stagnation in the convergence is detected; and b) the augmentation of the search subspace using vectors obtained at previous cycles. The proposal is compared with similar iterative methods of the literature based on standard GMRES(m) with fixed parameters. Numerical results for selected matrices suggest that the switching adaptive proposal method could overcome the stagnation observed in standard methods, and even improve the performance in terms of computational time and memory requirements. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100191 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100191 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2020.021.01.00191 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.21 n.1 2020 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220647284736 |