On the Exact Boundary Control for the Linear Klein-Gordon Equation in Non-cylindrical Domains

Detalhes bibliográficos
Autor(a) principal: NUNES,RUIKSON S. O.
Data de Publicação: 2020
Tipo de documento: Artigo
Idioma: eng
Título da fonte: TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000200371
Resumo: ABSTRACT The purpose of this paper is to study an exact boundary controllability problem in noncylindrical domains for the linear Klein-Gordon equation. Here, we work near of the extension techniques presented By J. Lagnese in (12) which is based in the Russell’s controllability method. The control time is obtained in any time greater then the value of the diameter of the domain on which the initial data are supported. The control is square integrable and acts on whole boundary and it is given by conormal derivative associated with the above-referenced wave operator.
id SBMAC-1_e57efca6aad0776fd02a0d42b3ac1166
oai_identifier_str oai:scielo:S2179-84512020000200371
network_acronym_str SBMAC-1
network_name_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository_id_str
spelling On the Exact Boundary Control for the Linear Klein-Gordon Equation in Non-cylindrical Domainsexact boundary controllabilitynon-cylindrical domainslinear Klein-Gordon equationABSTRACT The purpose of this paper is to study an exact boundary controllability problem in noncylindrical domains for the linear Klein-Gordon equation. Here, we work near of the extension techniques presented By J. Lagnese in (12) which is based in the Russell’s controllability method. The control time is obtained in any time greater then the value of the diameter of the domain on which the initial data are supported. The control is square integrable and acts on whole boundary and it is given by conormal derivative associated with the above-referenced wave operator.Sociedade Brasileira de Matemática Aplicada e Computacional2020-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000200371TEMA (São Carlos) v.21 n.2 2020reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2020.021.02.0003710371info:eu-repo/semantics/openAccessNUNES,RUIKSON S. O.eng2020-07-30T00:00:00Zoai:scielo:S2179-84512020000200371Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2020-07-30T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse
dc.title.none.fl_str_mv On the Exact Boundary Control for the Linear Klein-Gordon Equation in Non-cylindrical Domains
title On the Exact Boundary Control for the Linear Klein-Gordon Equation in Non-cylindrical Domains
spellingShingle On the Exact Boundary Control for the Linear Klein-Gordon Equation in Non-cylindrical Domains
NUNES,RUIKSON S. O.
exact boundary controllability
non-cylindrical domains
linear Klein-Gordon equation
title_short On the Exact Boundary Control for the Linear Klein-Gordon Equation in Non-cylindrical Domains
title_full On the Exact Boundary Control for the Linear Klein-Gordon Equation in Non-cylindrical Domains
title_fullStr On the Exact Boundary Control for the Linear Klein-Gordon Equation in Non-cylindrical Domains
title_full_unstemmed On the Exact Boundary Control for the Linear Klein-Gordon Equation in Non-cylindrical Domains
title_sort On the Exact Boundary Control for the Linear Klein-Gordon Equation in Non-cylindrical Domains
author NUNES,RUIKSON S. O.
author_facet NUNES,RUIKSON S. O.
author_role author
dc.contributor.author.fl_str_mv NUNES,RUIKSON S. O.
dc.subject.por.fl_str_mv exact boundary controllability
non-cylindrical domains
linear Klein-Gordon equation
topic exact boundary controllability
non-cylindrical domains
linear Klein-Gordon equation
description ABSTRACT The purpose of this paper is to study an exact boundary controllability problem in noncylindrical domains for the linear Klein-Gordon equation. Here, we work near of the extension techniques presented By J. Lagnese in (12) which is based in the Russell’s controllability method. The control time is obtained in any time greater then the value of the diameter of the domain on which the initial data are supported. The control is square integrable and acts on whole boundary and it is given by conormal derivative associated with the above-referenced wave operator.
publishDate 2020
dc.date.none.fl_str_mv 2020-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000200371
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000200371
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5540/tema.2020.021.02.0003710371
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv TEMA (São Carlos) v.21 n.2 2020
reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
instname:Sociedade Brasileira de Matemática Aplicada e Computacional
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional
instacron_str SBMAC
institution SBMAC
reponame_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
collection TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository.name.fl_str_mv TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional
repository.mail.fl_str_mv castelo@icmc.usp.br
_version_ 1752122220664061952