On the Exact Boundary Control for the Linear Klein-Gordon Equation in Non-cylindrical Domains
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000200371 |
Resumo: | ABSTRACT The purpose of this paper is to study an exact boundary controllability problem in noncylindrical domains for the linear Klein-Gordon equation. Here, we work near of the extension techniques presented By J. Lagnese in (12) which is based in the Russell’s controllability method. The control time is obtained in any time greater then the value of the diameter of the domain on which the initial data are supported. The control is square integrable and acts on whole boundary and it is given by conormal derivative associated with the above-referenced wave operator. |
id |
SBMAC-1_e57efca6aad0776fd02a0d42b3ac1166 |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512020000200371 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
On the Exact Boundary Control for the Linear Klein-Gordon Equation in Non-cylindrical Domainsexact boundary controllabilitynon-cylindrical domainslinear Klein-Gordon equationABSTRACT The purpose of this paper is to study an exact boundary controllability problem in noncylindrical domains for the linear Klein-Gordon equation. Here, we work near of the extension techniques presented By J. Lagnese in (12) which is based in the Russell’s controllability method. The control time is obtained in any time greater then the value of the diameter of the domain on which the initial data are supported. The control is square integrable and acts on whole boundary and it is given by conormal derivative associated with the above-referenced wave operator.Sociedade Brasileira de Matemática Aplicada e Computacional2020-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000200371TEMA (São Carlos) v.21 n.2 2020reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2020.021.02.0003710371info:eu-repo/semantics/openAccessNUNES,RUIKSON S. O.eng2020-07-30T00:00:00Zoai:scielo:S2179-84512020000200371Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2020-07-30T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
On the Exact Boundary Control for the Linear Klein-Gordon Equation in Non-cylindrical Domains |
title |
On the Exact Boundary Control for the Linear Klein-Gordon Equation in Non-cylindrical Domains |
spellingShingle |
On the Exact Boundary Control for the Linear Klein-Gordon Equation in Non-cylindrical Domains NUNES,RUIKSON S. O. exact boundary controllability non-cylindrical domains linear Klein-Gordon equation |
title_short |
On the Exact Boundary Control for the Linear Klein-Gordon Equation in Non-cylindrical Domains |
title_full |
On the Exact Boundary Control for the Linear Klein-Gordon Equation in Non-cylindrical Domains |
title_fullStr |
On the Exact Boundary Control for the Linear Klein-Gordon Equation in Non-cylindrical Domains |
title_full_unstemmed |
On the Exact Boundary Control for the Linear Klein-Gordon Equation in Non-cylindrical Domains |
title_sort |
On the Exact Boundary Control for the Linear Klein-Gordon Equation in Non-cylindrical Domains |
author |
NUNES,RUIKSON S. O. |
author_facet |
NUNES,RUIKSON S. O. |
author_role |
author |
dc.contributor.author.fl_str_mv |
NUNES,RUIKSON S. O. |
dc.subject.por.fl_str_mv |
exact boundary controllability non-cylindrical domains linear Klein-Gordon equation |
topic |
exact boundary controllability non-cylindrical domains linear Klein-Gordon equation |
description |
ABSTRACT The purpose of this paper is to study an exact boundary controllability problem in noncylindrical domains for the linear Klein-Gordon equation. Here, we work near of the extension techniques presented By J. Lagnese in (12) which is based in the Russell’s controllability method. The control time is obtained in any time greater then the value of the diameter of the domain on which the initial data are supported. The control is square integrable and acts on whole boundary and it is given by conormal derivative associated with the above-referenced wave operator. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000200371 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000200371 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2020.021.02.0003710371 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.21 n.2 2020 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220664061952 |