An Extension of the Invariance Principle for Switched Affine System
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100171 |
Resumo: | ABSTRACT In this paper, an approach to investigate switched affine system via matrix inequalities is presented. Particularly, an extension of LaSalle’s invariance principle for this class of systems under arbitrary dwell-time switching signal is presented. The proposed results employ a common auxiliary scalar function and also multiple auxiliary scalar functions to study the asymptotic behavior of switched solutions and estimate their attractors for any dwell-time switching signal. A specific feature of these results is that the derivative of the auxiliary scalar functions can assume positive values in some bounded sets. Moreover, a problem of constrained optimization is formulated to numerically determine the auxiliary scalar functions and minimize the volume of the estimated attractor. Numerical examples show the potential of the theoretical results in providing information on the asymptotic behavior of solutions of the switched affine systems under arbitrary dwell-time switching signals. |
id |
SBMAC-1_eacb6077e54c243caae2cf0b66afc649 |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512020000100171 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
An Extension of the Invariance Principle for Switched Affine Systemswitched affine systeminvariance principledwell-timeattractor setABSTRACT In this paper, an approach to investigate switched affine system via matrix inequalities is presented. Particularly, an extension of LaSalle’s invariance principle for this class of systems under arbitrary dwell-time switching signal is presented. The proposed results employ a common auxiliary scalar function and also multiple auxiliary scalar functions to study the asymptotic behavior of switched solutions and estimate their attractors for any dwell-time switching signal. A specific feature of these results is that the derivative of the auxiliary scalar functions can assume positive values in some bounded sets. Moreover, a problem of constrained optimization is formulated to numerically determine the auxiliary scalar functions and minimize the volume of the estimated attractor. Numerical examples show the potential of the theoretical results in providing information on the asymptotic behavior of solutions of the switched affine systems under arbitrary dwell-time switching signals.Sociedade Brasileira de Matemática Aplicada e Computacional2020-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100171TEMA (São Carlos) v.21 n.1 2020reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2020.021.01.00171info:eu-repo/semantics/openAccessPINTO,T.S.ALBERTO,L.F.C.VALENTINO,M.C.eng2020-04-28T00:00:00Zoai:scielo:S2179-84512020000100171Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2020-04-28T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
An Extension of the Invariance Principle for Switched Affine System |
title |
An Extension of the Invariance Principle for Switched Affine System |
spellingShingle |
An Extension of the Invariance Principle for Switched Affine System PINTO,T.S. switched affine system invariance principle dwell-time attractor set |
title_short |
An Extension of the Invariance Principle for Switched Affine System |
title_full |
An Extension of the Invariance Principle for Switched Affine System |
title_fullStr |
An Extension of the Invariance Principle for Switched Affine System |
title_full_unstemmed |
An Extension of the Invariance Principle for Switched Affine System |
title_sort |
An Extension of the Invariance Principle for Switched Affine System |
author |
PINTO,T.S. |
author_facet |
PINTO,T.S. ALBERTO,L.F.C. VALENTINO,M.C. |
author_role |
author |
author2 |
ALBERTO,L.F.C. VALENTINO,M.C. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
PINTO,T.S. ALBERTO,L.F.C. VALENTINO,M.C. |
dc.subject.por.fl_str_mv |
switched affine system invariance principle dwell-time attractor set |
topic |
switched affine system invariance principle dwell-time attractor set |
description |
ABSTRACT In this paper, an approach to investigate switched affine system via matrix inequalities is presented. Particularly, an extension of LaSalle’s invariance principle for this class of systems under arbitrary dwell-time switching signal is presented. The proposed results employ a common auxiliary scalar function and also multiple auxiliary scalar functions to study the asymptotic behavior of switched solutions and estimate their attractors for any dwell-time switching signal. A specific feature of these results is that the derivative of the auxiliary scalar functions can assume positive values in some bounded sets. Moreover, a problem of constrained optimization is formulated to numerically determine the auxiliary scalar functions and minimize the volume of the estimated attractor. Numerical examples show the potential of the theoretical results in providing information on the asymptotic behavior of solutions of the switched affine systems under arbitrary dwell-time switching signals. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100171 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100171 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2020.021.01.00171 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.21 n.1 2020 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220646236160 |