Finite Element Method with Spectral Green's Function in Slab Geometry for Neutron Diffusion in Multiplying Media and One Energy Group

Detalhes bibliográficos
Autor(a) principal: ROCHA,R.V.M.
Data de Publicação: 2016
Outros Autores: DOMINGUEZ,D.S., IGLESIAS,S.M., BARROS,R.C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000200173
Resumo: ABSTRACT The physical phenomenon of neutrons transport associated with eigenvalue problems appears in the criticality calculations of nuclear reactors and can be treated as a diffusion process. This paper presents a method to solve eigenvalue problems of neutron diffusion in slab geometry and one energy group. This formulation combines the Finite Element Method, considered an intermediate mesh method, with the Spectral Green's Function Method, which is free of truncation errors, and it is considered a coarse mesh method. The novelty of this formulation is to approach the spatial moments of the neutron flux distribution by the first-order polynomials obtained from the spectral analysis of diffusion equation. The approximations provided by the proposed formulation allow obtaining accurate results in coarse mesh calculations. To validate the proposed method, we compared its results with methods described in the literature. The accuracy and computational performance of our formulation were characterized by solving a benchmark problem with a high degree of heterogeneity.
id SBMAC-1_f0285cdbe24b83b971f1bd00211dbb82
oai_identifier_str oai:scielo:S2179-84512016000200173
network_acronym_str SBMAC-1
network_name_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository_id_str
spelling Finite Element Method with Spectral Green's Function in Slab Geometry for Neutron Diffusion in Multiplying Media and One Energy GroupEigenvalue problemsNeutron diffusion equationSpectral Green's functionABSTRACT The physical phenomenon of neutrons transport associated with eigenvalue problems appears in the criticality calculations of nuclear reactors and can be treated as a diffusion process. This paper presents a method to solve eigenvalue problems of neutron diffusion in slab geometry and one energy group. This formulation combines the Finite Element Method, considered an intermediate mesh method, with the Spectral Green's Function Method, which is free of truncation errors, and it is considered a coarse mesh method. The novelty of this formulation is to approach the spatial moments of the neutron flux distribution by the first-order polynomials obtained from the spectral analysis of diffusion equation. The approximations provided by the proposed formulation allow obtaining accurate results in coarse mesh calculations. To validate the proposed method, we compared its results with methods described in the literature. The accuracy and computational performance of our formulation were characterized by solving a benchmark problem with a high degree of heterogeneity.Sociedade Brasileira de Matemática Aplicada e Computacional2016-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000200173TEMA (São Carlos) v.17 n.2 2016reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2016.017.02.0173info:eu-repo/semantics/openAccessROCHA,R.V.M.DOMINGUEZ,D.S.IGLESIAS,S.M.BARROS,R.C.eng2016-10-03T00:00:00Zoai:scielo:S2179-84512016000200173Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2016-10-03T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse
dc.title.none.fl_str_mv Finite Element Method with Spectral Green's Function in Slab Geometry for Neutron Diffusion in Multiplying Media and One Energy Group
title Finite Element Method with Spectral Green's Function in Slab Geometry for Neutron Diffusion in Multiplying Media and One Energy Group
spellingShingle Finite Element Method with Spectral Green's Function in Slab Geometry for Neutron Diffusion in Multiplying Media and One Energy Group
ROCHA,R.V.M.
Eigenvalue problems
Neutron diffusion equation
Spectral Green's function
title_short Finite Element Method with Spectral Green's Function in Slab Geometry for Neutron Diffusion in Multiplying Media and One Energy Group
title_full Finite Element Method with Spectral Green's Function in Slab Geometry for Neutron Diffusion in Multiplying Media and One Energy Group
title_fullStr Finite Element Method with Spectral Green's Function in Slab Geometry for Neutron Diffusion in Multiplying Media and One Energy Group
title_full_unstemmed Finite Element Method with Spectral Green's Function in Slab Geometry for Neutron Diffusion in Multiplying Media and One Energy Group
title_sort Finite Element Method with Spectral Green's Function in Slab Geometry for Neutron Diffusion in Multiplying Media and One Energy Group
author ROCHA,R.V.M.
author_facet ROCHA,R.V.M.
DOMINGUEZ,D.S.
IGLESIAS,S.M.
BARROS,R.C.
author_role author
author2 DOMINGUEZ,D.S.
IGLESIAS,S.M.
BARROS,R.C.
author2_role author
author
author
dc.contributor.author.fl_str_mv ROCHA,R.V.M.
DOMINGUEZ,D.S.
IGLESIAS,S.M.
BARROS,R.C.
dc.subject.por.fl_str_mv Eigenvalue problems
Neutron diffusion equation
Spectral Green's function
topic Eigenvalue problems
Neutron diffusion equation
Spectral Green's function
description ABSTRACT The physical phenomenon of neutrons transport associated with eigenvalue problems appears in the criticality calculations of nuclear reactors and can be treated as a diffusion process. This paper presents a method to solve eigenvalue problems of neutron diffusion in slab geometry and one energy group. This formulation combines the Finite Element Method, considered an intermediate mesh method, with the Spectral Green's Function Method, which is free of truncation errors, and it is considered a coarse mesh method. The novelty of this formulation is to approach the spatial moments of the neutron flux distribution by the first-order polynomials obtained from the spectral analysis of diffusion equation. The approximations provided by the proposed formulation allow obtaining accurate results in coarse mesh calculations. To validate the proposed method, we compared its results with methods described in the literature. The accuracy and computational performance of our formulation were characterized by solving a benchmark problem with a high degree of heterogeneity.
publishDate 2016
dc.date.none.fl_str_mv 2016-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000200173
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512016000200173
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5540/tema.2016.017.02.0173
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv TEMA (São Carlos) v.17 n.2 2016
reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
instname:Sociedade Brasileira de Matemática Aplicada e Computacional
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional
instacron_str SBMAC
institution SBMAC
reponame_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
collection TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository.name.fl_str_mv TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional
repository.mail.fl_str_mv castelo@icmc.usp.br
_version_ 1752122220165988352