Hermite spectral and pseudospectral methods for nonlinear partial differential equation in multiple dimensions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000200002 |
Resumo: | Hermite approximation in multiple dimensions is investigated. As an example, a spectral scheme and a pseudospectral scheme for the Logistic equation are constructed, respectively. The stability and the convergence of the proposed schemes are proved. Numerical results show the high accuracy of this new approach. |
id |
SBMAC-2_0235a583eee1e64de882b72616c19930 |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022003000200002 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
Hermite spectral and pseudospectral methods for nonlinear partial differential equation in multiple dimensionsHermite approximationnonlinear partial differential equationsmultiple dimensionsHermite approximation in multiple dimensions is investigated. As an example, a spectral scheme and a pseudospectral scheme for the Logistic equation are constructed, respectively. The stability and the convergence of the proposed schemes are proved. Numerical results show the high accuracy of this new approach.Sociedade Brasileira de Matemática Aplicada e Computacional2003-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000200002Computational & Applied Mathematics v.22 n.2 2003reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMAC10.1590/S0101-82052003000200002info:eu-repo/semantics/openAccessCheng-Long,XuBen-Yu,Guoeng2004-07-20T00:00:00Zoai:scielo:S1807-03022003000200002Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2004-07-20T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
Hermite spectral and pseudospectral methods for nonlinear partial differential equation in multiple dimensions |
title |
Hermite spectral and pseudospectral methods for nonlinear partial differential equation in multiple dimensions |
spellingShingle |
Hermite spectral and pseudospectral methods for nonlinear partial differential equation in multiple dimensions Cheng-Long,Xu Hermite approximation nonlinear partial differential equations multiple dimensions |
title_short |
Hermite spectral and pseudospectral methods for nonlinear partial differential equation in multiple dimensions |
title_full |
Hermite spectral and pseudospectral methods for nonlinear partial differential equation in multiple dimensions |
title_fullStr |
Hermite spectral and pseudospectral methods for nonlinear partial differential equation in multiple dimensions |
title_full_unstemmed |
Hermite spectral and pseudospectral methods for nonlinear partial differential equation in multiple dimensions |
title_sort |
Hermite spectral and pseudospectral methods for nonlinear partial differential equation in multiple dimensions |
author |
Cheng-Long,Xu |
author_facet |
Cheng-Long,Xu Ben-Yu,Guo |
author_role |
author |
author2 |
Ben-Yu,Guo |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Cheng-Long,Xu Ben-Yu,Guo |
dc.subject.por.fl_str_mv |
Hermite approximation nonlinear partial differential equations multiple dimensions |
topic |
Hermite approximation nonlinear partial differential equations multiple dimensions |
description |
Hermite approximation in multiple dimensions is investigated. As an example, a spectral scheme and a pseudospectral scheme for the Logistic equation are constructed, respectively. The stability and the convergence of the proposed schemes are proved. Numerical results show the high accuracy of this new approach. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000200002 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000200002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0101-82052003000200002 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.22 n.2 2003 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734889660317696 |