A sequential quadratic programming algorithm that combines merit function and filter ideas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022007000300003 |
Resumo: | A sequential quadratic programming algorithm for solving nonlinear programming problems is presented. The new feature of the algorithm is related to the definition of the merit function. Instead of using one penalty parameter per iteration and increasing it as the algorithm progresses, we suggest that a new point is to be accepted if it stays sufficiently below the piecewise linear function defined by some previous iterates on the (f,||C||2²)-space. Therefore, the penalty parameter is allowed to decrease between successive iterations. Besides, one need not to decide how to update the penalty parameter. This approach resembles the filter method introduced by Fletcher and Leyffer [Math. Program., 91 (2001), pp. 239-269], but it is less tolerant since a merit function is still used. Numerical comparison with standard methods shows that this strategy is promising. |
id |
SBMAC-2_312561a088e1a577cdfa9f8d87d636e0 |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022007000300003 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
A sequential quadratic programming algorithm that combines merit function and filter ideassequential quadratic programmingmerit functionsfilter methodsA sequential quadratic programming algorithm for solving nonlinear programming problems is presented. The new feature of the algorithm is related to the definition of the merit function. Instead of using one penalty parameter per iteration and increasing it as the algorithm progresses, we suggest that a new point is to be accepted if it stays sufficiently below the piecewise linear function defined by some previous iterates on the (f,||C||2²)-space. Therefore, the penalty parameter is allowed to decrease between successive iterations. Besides, one need not to decide how to update the penalty parameter. This approach resembles the filter method introduced by Fletcher and Leyffer [Math. Program., 91 (2001), pp. 239-269], but it is less tolerant since a merit function is still used. Numerical comparison with standard methods shows that this strategy is promising.Sociedade Brasileira de Matemática Aplicada e Computacional2007-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022007000300003Computational & Applied Mathematics v.26 n.3 2007reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMAC10.1590/S0101-82052007000300003info:eu-repo/semantics/openAccessGomes,Francisco A.M.eng2007-11-22T00:00:00Zoai:scielo:S1807-03022007000300003Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2007-11-22T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
A sequential quadratic programming algorithm that combines merit function and filter ideas |
title |
A sequential quadratic programming algorithm that combines merit function and filter ideas |
spellingShingle |
A sequential quadratic programming algorithm that combines merit function and filter ideas Gomes,Francisco A.M. sequential quadratic programming merit functions filter methods |
title_short |
A sequential quadratic programming algorithm that combines merit function and filter ideas |
title_full |
A sequential quadratic programming algorithm that combines merit function and filter ideas |
title_fullStr |
A sequential quadratic programming algorithm that combines merit function and filter ideas |
title_full_unstemmed |
A sequential quadratic programming algorithm that combines merit function and filter ideas |
title_sort |
A sequential quadratic programming algorithm that combines merit function and filter ideas |
author |
Gomes,Francisco A.M. |
author_facet |
Gomes,Francisco A.M. |
author_role |
author |
dc.contributor.author.fl_str_mv |
Gomes,Francisco A.M. |
dc.subject.por.fl_str_mv |
sequential quadratic programming merit functions filter methods |
topic |
sequential quadratic programming merit functions filter methods |
description |
A sequential quadratic programming algorithm for solving nonlinear programming problems is presented. The new feature of the algorithm is related to the definition of the merit function. Instead of using one penalty parameter per iteration and increasing it as the algorithm progresses, we suggest that a new point is to be accepted if it stays sufficiently below the piecewise linear function defined by some previous iterates on the (f,||C||2²)-space. Therefore, the penalty parameter is allowed to decrease between successive iterations. Besides, one need not to decide how to update the penalty parameter. This approach resembles the filter method introduced by Fletcher and Leyffer [Math. Program., 91 (2001), pp. 239-269], but it is less tolerant since a merit function is still used. Numerical comparison with standard methods shows that this strategy is promising. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022007000300003 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022007000300003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0101-82052007000300003 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.26 n.3 2007 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734889839624192 |