A one-shot inpainting algorithm based on the topological asymptotic analysis

Detalhes bibliográficos
Autor(a) principal: Auroux,Didier
Data de Publicação: 2006
Outros Autores: Masmoudi,Mohamed
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Computational & Applied Mathematics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022006000200008
Resumo: The aim of this article is to propose a new method for the inpainting problem. Inpainting is the problem of filling-in holes in images. We consider in this article the crack localization problem, which can be solved using the Dirichlet to Neumann approach and the topological gradient. In a similar way, we can define a Dirichlet and a Neumann inpainting problem. We then define a cost function measuring the discrepancy between the two corresponding solutions. The minimization is done using the topological asymptotic analysis, and is performed in only one iteration. The optimal solution provides the best localization of the missing edges, and it is then easy to inpaint the holes.
id SBMAC-2_31272418d9799b3ae0082306b9cc3494
oai_identifier_str oai:scielo:S1807-03022006000200008
network_acronym_str SBMAC-2
network_name_str Computational & Applied Mathematics
repository_id_str
spelling A one-shot inpainting algorithm based on the topological asymptotic analysisimage inpaintingtopological asymptotic analysisinverse conductivity problemThe aim of this article is to propose a new method for the inpainting problem. Inpainting is the problem of filling-in holes in images. We consider in this article the crack localization problem, which can be solved using the Dirichlet to Neumann approach and the topological gradient. In a similar way, we can define a Dirichlet and a Neumann inpainting problem. We then define a cost function measuring the discrepancy between the two corresponding solutions. The minimization is done using the topological asymptotic analysis, and is performed in only one iteration. The optimal solution provides the best localization of the missing edges, and it is then easy to inpaint the holes.Sociedade Brasileira de Matemática Aplicada e Computacional2006-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022006000200008Computational & Applied Mathematics v.25 n.2-3 2006reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMACinfo:eu-repo/semantics/openAccessAuroux,DidierMasmoudi,Mohamedeng2007-03-19T00:00:00Zoai:scielo:S1807-03022006000200008Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2007-03-19T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false
dc.title.none.fl_str_mv A one-shot inpainting algorithm based on the topological asymptotic analysis
title A one-shot inpainting algorithm based on the topological asymptotic analysis
spellingShingle A one-shot inpainting algorithm based on the topological asymptotic analysis
Auroux,Didier
image inpainting
topological asymptotic analysis
inverse conductivity problem
title_short A one-shot inpainting algorithm based on the topological asymptotic analysis
title_full A one-shot inpainting algorithm based on the topological asymptotic analysis
title_fullStr A one-shot inpainting algorithm based on the topological asymptotic analysis
title_full_unstemmed A one-shot inpainting algorithm based on the topological asymptotic analysis
title_sort A one-shot inpainting algorithm based on the topological asymptotic analysis
author Auroux,Didier
author_facet Auroux,Didier
Masmoudi,Mohamed
author_role author
author2 Masmoudi,Mohamed
author2_role author
dc.contributor.author.fl_str_mv Auroux,Didier
Masmoudi,Mohamed
dc.subject.por.fl_str_mv image inpainting
topological asymptotic analysis
inverse conductivity problem
topic image inpainting
topological asymptotic analysis
inverse conductivity problem
description The aim of this article is to propose a new method for the inpainting problem. Inpainting is the problem of filling-in holes in images. We consider in this article the crack localization problem, which can be solved using the Dirichlet to Neumann approach and the topological gradient. In a similar way, we can define a Dirichlet and a Neumann inpainting problem. We then define a cost function measuring the discrepancy between the two corresponding solutions. The minimization is done using the topological asymptotic analysis, and is performed in only one iteration. The optimal solution provides the best localization of the missing edges, and it is then easy to inpaint the holes.
publishDate 2006
dc.date.none.fl_str_mv 2006-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022006000200008
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022006000200008
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv Computational & Applied Mathematics v.25 n.2-3 2006
reponame:Computational & Applied Mathematics
instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron_str SBMAC
institution SBMAC
reponame_str Computational & Applied Mathematics
collection Computational & Applied Mathematics
repository.name.fl_str_mv Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
repository.mail.fl_str_mv ||sbmac@sbmac.org.br
_version_ 1754734889815506944