A one-shot inpainting algorithm based on the topological asymptotic analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022006000200008 |
Resumo: | The aim of this article is to propose a new method for the inpainting problem. Inpainting is the problem of filling-in holes in images. We consider in this article the crack localization problem, which can be solved using the Dirichlet to Neumann approach and the topological gradient. In a similar way, we can define a Dirichlet and a Neumann inpainting problem. We then define a cost function measuring the discrepancy between the two corresponding solutions. The minimization is done using the topological asymptotic analysis, and is performed in only one iteration. The optimal solution provides the best localization of the missing edges, and it is then easy to inpaint the holes. |
id |
SBMAC-2_31272418d9799b3ae0082306b9cc3494 |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022006000200008 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
A one-shot inpainting algorithm based on the topological asymptotic analysisimage inpaintingtopological asymptotic analysisinverse conductivity problemThe aim of this article is to propose a new method for the inpainting problem. Inpainting is the problem of filling-in holes in images. We consider in this article the crack localization problem, which can be solved using the Dirichlet to Neumann approach and the topological gradient. In a similar way, we can define a Dirichlet and a Neumann inpainting problem. We then define a cost function measuring the discrepancy between the two corresponding solutions. The minimization is done using the topological asymptotic analysis, and is performed in only one iteration. The optimal solution provides the best localization of the missing edges, and it is then easy to inpaint the holes.Sociedade Brasileira de Matemática Aplicada e Computacional2006-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022006000200008Computational & Applied Mathematics v.25 n.2-3 2006reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMACinfo:eu-repo/semantics/openAccessAuroux,DidierMasmoudi,Mohamedeng2007-03-19T00:00:00Zoai:scielo:S1807-03022006000200008Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2007-03-19T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
A one-shot inpainting algorithm based on the topological asymptotic analysis |
title |
A one-shot inpainting algorithm based on the topological asymptotic analysis |
spellingShingle |
A one-shot inpainting algorithm based on the topological asymptotic analysis Auroux,Didier image inpainting topological asymptotic analysis inverse conductivity problem |
title_short |
A one-shot inpainting algorithm based on the topological asymptotic analysis |
title_full |
A one-shot inpainting algorithm based on the topological asymptotic analysis |
title_fullStr |
A one-shot inpainting algorithm based on the topological asymptotic analysis |
title_full_unstemmed |
A one-shot inpainting algorithm based on the topological asymptotic analysis |
title_sort |
A one-shot inpainting algorithm based on the topological asymptotic analysis |
author |
Auroux,Didier |
author_facet |
Auroux,Didier Masmoudi,Mohamed |
author_role |
author |
author2 |
Masmoudi,Mohamed |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Auroux,Didier Masmoudi,Mohamed |
dc.subject.por.fl_str_mv |
image inpainting topological asymptotic analysis inverse conductivity problem |
topic |
image inpainting topological asymptotic analysis inverse conductivity problem |
description |
The aim of this article is to propose a new method for the inpainting problem. Inpainting is the problem of filling-in holes in images. We consider in this article the crack localization problem, which can be solved using the Dirichlet to Neumann approach and the topological gradient. In a similar way, we can define a Dirichlet and a Neumann inpainting problem. We then define a cost function measuring the discrepancy between the two corresponding solutions. The minimization is done using the topological asymptotic analysis, and is performed in only one iteration. The optimal solution provides the best localization of the missing edges, and it is then easy to inpaint the holes. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022006000200008 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022006000200008 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.25 n.2-3 2006 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734889815506944 |