Studies on Barlow points, Gauss points and Superconvergent points in 1D with Lagrangian and Hermitian finite element basis

Detalhes bibliográficos
Autor(a) principal: Pinto Júnior,David Soares
Data de Publicação: 2008
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Computational & Applied Mathematics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022008000300004
Resumo: In this work, we consider the superconvergence property of the finite element derivative for Lagrange's and Hermite's Family elements in the one dimensional interpolation problem. We also compare the Barlow points, Gauss points and Superconvergence points in the sense of Taylor's Series, confirming that they are not the same as believed before. We prove a not evident and new superconvergence property of Hermite's basis as well which shows that the centroid is not only a superconvergent for u'h but an O(h5) accuracy point.
id SBMAC-2_369c19e271eead97e87bd7f14d1d5ee9
oai_identifier_str oai:scielo:S1807-03022008000300004
network_acronym_str SBMAC-2
network_name_str Computational & Applied Mathematics
repository_id_str
spelling Studies on Barlow points, Gauss points and Superconvergent points in 1D with Lagrangian and Hermitian finite element basisGauss pointsBarlow pointsSuperconvergence pointsderivativefinite elementsIn this work, we consider the superconvergence property of the finite element derivative for Lagrange's and Hermite's Family elements in the one dimensional interpolation problem. We also compare the Barlow points, Gauss points and Superconvergence points in the sense of Taylor's Series, confirming that they are not the same as believed before. We prove a not evident and new superconvergence property of Hermite's basis as well which shows that the centroid is not only a superconvergent for u'h but an O(h5) accuracy point.Sociedade Brasileira de Matemática Aplicada e Computacional2008-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022008000300004Computational & Applied Mathematics v.27 n.3 2008reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMACinfo:eu-repo/semantics/openAccessPinto Júnior,David Soareseng2008-10-29T00:00:00Zoai:scielo:S1807-03022008000300004Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2008-10-29T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false
dc.title.none.fl_str_mv Studies on Barlow points, Gauss points and Superconvergent points in 1D with Lagrangian and Hermitian finite element basis
title Studies on Barlow points, Gauss points and Superconvergent points in 1D with Lagrangian and Hermitian finite element basis
spellingShingle Studies on Barlow points, Gauss points and Superconvergent points in 1D with Lagrangian and Hermitian finite element basis
Pinto Júnior,David Soares
Gauss points
Barlow points
Superconvergence points
derivative
finite elements
title_short Studies on Barlow points, Gauss points and Superconvergent points in 1D with Lagrangian and Hermitian finite element basis
title_full Studies on Barlow points, Gauss points and Superconvergent points in 1D with Lagrangian and Hermitian finite element basis
title_fullStr Studies on Barlow points, Gauss points and Superconvergent points in 1D with Lagrangian and Hermitian finite element basis
title_full_unstemmed Studies on Barlow points, Gauss points and Superconvergent points in 1D with Lagrangian and Hermitian finite element basis
title_sort Studies on Barlow points, Gauss points and Superconvergent points in 1D with Lagrangian and Hermitian finite element basis
author Pinto Júnior,David Soares
author_facet Pinto Júnior,David Soares
author_role author
dc.contributor.author.fl_str_mv Pinto Júnior,David Soares
dc.subject.por.fl_str_mv Gauss points
Barlow points
Superconvergence points
derivative
finite elements
topic Gauss points
Barlow points
Superconvergence points
derivative
finite elements
description In this work, we consider the superconvergence property of the finite element derivative for Lagrange's and Hermite's Family elements in the one dimensional interpolation problem. We also compare the Barlow points, Gauss points and Superconvergence points in the sense of Taylor's Series, confirming that they are not the same as believed before. We prove a not evident and new superconvergence property of Hermite's basis as well which shows that the centroid is not only a superconvergent for u'h but an O(h5) accuracy point.
publishDate 2008
dc.date.none.fl_str_mv 2008-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022008000300004
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022008000300004
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv Computational & Applied Mathematics v.27 n.3 2008
reponame:Computational & Applied Mathematics
instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron_str SBMAC
institution SBMAC
reponame_str Computational & Applied Mathematics
collection Computational & Applied Mathematics
repository.name.fl_str_mv Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
repository.mail.fl_str_mv ||sbmac@sbmac.org.br
_version_ 1754734890172022784