Studies on Barlow points, Gauss points and Superconvergent points in 1D with Lagrangian and Hermitian finite element basis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022008000300004 |
Resumo: | In this work, we consider the superconvergence property of the finite element derivative for Lagrange's and Hermite's Family elements in the one dimensional interpolation problem. We also compare the Barlow points, Gauss points and Superconvergence points in the sense of Taylor's Series, confirming that they are not the same as believed before. We prove a not evident and new superconvergence property of Hermite's basis as well which shows that the centroid is not only a superconvergent for u'h but an O(h5) accuracy point. |
id |
SBMAC-2_369c19e271eead97e87bd7f14d1d5ee9 |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022008000300004 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
Studies on Barlow points, Gauss points and Superconvergent points in 1D with Lagrangian and Hermitian finite element basisGauss pointsBarlow pointsSuperconvergence pointsderivativefinite elementsIn this work, we consider the superconvergence property of the finite element derivative for Lagrange's and Hermite's Family elements in the one dimensional interpolation problem. We also compare the Barlow points, Gauss points and Superconvergence points in the sense of Taylor's Series, confirming that they are not the same as believed before. We prove a not evident and new superconvergence property of Hermite's basis as well which shows that the centroid is not only a superconvergent for u'h but an O(h5) accuracy point.Sociedade Brasileira de Matemática Aplicada e Computacional2008-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022008000300004Computational & Applied Mathematics v.27 n.3 2008reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMACinfo:eu-repo/semantics/openAccessPinto Júnior,David Soareseng2008-10-29T00:00:00Zoai:scielo:S1807-03022008000300004Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2008-10-29T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
Studies on Barlow points, Gauss points and Superconvergent points in 1D with Lagrangian and Hermitian finite element basis |
title |
Studies on Barlow points, Gauss points and Superconvergent points in 1D with Lagrangian and Hermitian finite element basis |
spellingShingle |
Studies on Barlow points, Gauss points and Superconvergent points in 1D with Lagrangian and Hermitian finite element basis Pinto Júnior,David Soares Gauss points Barlow points Superconvergence points derivative finite elements |
title_short |
Studies on Barlow points, Gauss points and Superconvergent points in 1D with Lagrangian and Hermitian finite element basis |
title_full |
Studies on Barlow points, Gauss points and Superconvergent points in 1D with Lagrangian and Hermitian finite element basis |
title_fullStr |
Studies on Barlow points, Gauss points and Superconvergent points in 1D with Lagrangian and Hermitian finite element basis |
title_full_unstemmed |
Studies on Barlow points, Gauss points and Superconvergent points in 1D with Lagrangian and Hermitian finite element basis |
title_sort |
Studies on Barlow points, Gauss points and Superconvergent points in 1D with Lagrangian and Hermitian finite element basis |
author |
Pinto Júnior,David Soares |
author_facet |
Pinto Júnior,David Soares |
author_role |
author |
dc.contributor.author.fl_str_mv |
Pinto Júnior,David Soares |
dc.subject.por.fl_str_mv |
Gauss points Barlow points Superconvergence points derivative finite elements |
topic |
Gauss points Barlow points Superconvergence points derivative finite elements |
description |
In this work, we consider the superconvergence property of the finite element derivative for Lagrange's and Hermite's Family elements in the one dimensional interpolation problem. We also compare the Barlow points, Gauss points and Superconvergence points in the sense of Taylor's Series, confirming that they are not the same as believed before. We prove a not evident and new superconvergence property of Hermite's basis as well which shows that the centroid is not only a superconvergent for u'h but an O(h5) accuracy point. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022008000300004 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022008000300004 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.27 n.3 2008 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734890172022784 |