Regularity results for semimonotone operators
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022011000100002 |
Resumo: | We introduce the concept of ρ-semimonotone point-to-set operators in Hilbert spaces. This notion is symmetrical with respect to the graph of T, as is the case for monotonicity, but not for other related notions, like e.g. hypomonotonicity, of which our new class is a relaxation. We give a necessary condition for ρ-semimonotonicity of T in terms of Lispchitz continuity of [T + ρ-11]-1 and a sufficient condition related to expansivity of T. We also establish surjectivity results for maximal ρ-semimonotone operators. |
id |
SBMAC-2_480f29ee32d401be21123e92cb7f0c1d |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022011000100002 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
Regularity results for semimonotone operatorshypomonotonicitysurjectivityprox-regularitysemimonotonicityWe introduce the concept of ρ-semimonotone point-to-set operators in Hilbert spaces. This notion is symmetrical with respect to the graph of T, as is the case for monotonicity, but not for other related notions, like e.g. hypomonotonicity, of which our new class is a relaxation. We give a necessary condition for ρ-semimonotonicity of T in terms of Lispchitz continuity of [T + ρ-11]-1 and a sufficient condition related to expansivity of T. We also establish surjectivity results for maximal ρ-semimonotone operators.Sociedade Brasileira de Matemática Aplicada e Computacional2011-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022011000100002Computational & Applied Mathematics v.30 n.1 2011reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMAC10.1590/S1807-03022011000100002info:eu-repo/semantics/openAccessOtero,Rolando GárcigaIusem,Alfredoeng2011-03-22T00:00:00Zoai:scielo:S1807-03022011000100002Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2011-03-22T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
Regularity results for semimonotone operators |
title |
Regularity results for semimonotone operators |
spellingShingle |
Regularity results for semimonotone operators Otero,Rolando Gárciga hypomonotonicity surjectivity prox-regularity semimonotonicity |
title_short |
Regularity results for semimonotone operators |
title_full |
Regularity results for semimonotone operators |
title_fullStr |
Regularity results for semimonotone operators |
title_full_unstemmed |
Regularity results for semimonotone operators |
title_sort |
Regularity results for semimonotone operators |
author |
Otero,Rolando Gárciga |
author_facet |
Otero,Rolando Gárciga Iusem,Alfredo |
author_role |
author |
author2 |
Iusem,Alfredo |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Otero,Rolando Gárciga Iusem,Alfredo |
dc.subject.por.fl_str_mv |
hypomonotonicity surjectivity prox-regularity semimonotonicity |
topic |
hypomonotonicity surjectivity prox-regularity semimonotonicity |
description |
We introduce the concept of ρ-semimonotone point-to-set operators in Hilbert spaces. This notion is symmetrical with respect to the graph of T, as is the case for monotonicity, but not for other related notions, like e.g. hypomonotonicity, of which our new class is a relaxation. We give a necessary condition for ρ-semimonotonicity of T in terms of Lispchitz continuity of [T + ρ-11]-1 and a sufficient condition related to expansivity of T. We also establish surjectivity results for maximal ρ-semimonotone operators. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022011000100002 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022011000100002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1807-03022011000100002 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.30 n.1 2011 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734890229694464 |