Regularity results for semimonotone operators

Detalhes bibliográficos
Autor(a) principal: Otero,Rolando Gárciga
Data de Publicação: 2011
Outros Autores: Iusem,Alfredo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Computational & Applied Mathematics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022011000100002
Resumo: We introduce the concept of ρ-semimonotone point-to-set operators in Hilbert spaces. This notion is symmetrical with respect to the graph of T, as is the case for monotonicity, but not for other related notions, like e.g. hypomonotonicity, of which our new class is a relaxation. We give a necessary condition for ρ-semimonotonicity of T in terms of Lispchitz continuity of [T + ρ-11]-1 and a sufficient condition related to expansivity of T. We also establish surjectivity results for maximal ρ-semimonotone operators.
id SBMAC-2_480f29ee32d401be21123e92cb7f0c1d
oai_identifier_str oai:scielo:S1807-03022011000100002
network_acronym_str SBMAC-2
network_name_str Computational & Applied Mathematics
repository_id_str
spelling Regularity results for semimonotone operatorshypomonotonicitysurjectivityprox-regularitysemimonotonicityWe introduce the concept of ρ-semimonotone point-to-set operators in Hilbert spaces. This notion is symmetrical with respect to the graph of T, as is the case for monotonicity, but not for other related notions, like e.g. hypomonotonicity, of which our new class is a relaxation. We give a necessary condition for ρ-semimonotonicity of T in terms of Lispchitz continuity of [T + ρ-11]-1 and a sufficient condition related to expansivity of T. We also establish surjectivity results for maximal ρ-semimonotone operators.Sociedade Brasileira de Matemática Aplicada e Computacional2011-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022011000100002Computational & Applied Mathematics v.30 n.1 2011reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMAC10.1590/S1807-03022011000100002info:eu-repo/semantics/openAccessOtero,Rolando GárcigaIusem,Alfredoeng2011-03-22T00:00:00Zoai:scielo:S1807-03022011000100002Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2011-03-22T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false
dc.title.none.fl_str_mv Regularity results for semimonotone operators
title Regularity results for semimonotone operators
spellingShingle Regularity results for semimonotone operators
Otero,Rolando Gárciga
hypomonotonicity
surjectivity
prox-regularity
semimonotonicity
title_short Regularity results for semimonotone operators
title_full Regularity results for semimonotone operators
title_fullStr Regularity results for semimonotone operators
title_full_unstemmed Regularity results for semimonotone operators
title_sort Regularity results for semimonotone operators
author Otero,Rolando Gárciga
author_facet Otero,Rolando Gárciga
Iusem,Alfredo
author_role author
author2 Iusem,Alfredo
author2_role author
dc.contributor.author.fl_str_mv Otero,Rolando Gárciga
Iusem,Alfredo
dc.subject.por.fl_str_mv hypomonotonicity
surjectivity
prox-regularity
semimonotonicity
topic hypomonotonicity
surjectivity
prox-regularity
semimonotonicity
description We introduce the concept of ρ-semimonotone point-to-set operators in Hilbert spaces. This notion is symmetrical with respect to the graph of T, as is the case for monotonicity, but not for other related notions, like e.g. hypomonotonicity, of which our new class is a relaxation. We give a necessary condition for ρ-semimonotonicity of T in terms of Lispchitz continuity of [T + ρ-11]-1 and a sufficient condition related to expansivity of T. We also establish surjectivity results for maximal ρ-semimonotone operators.
publishDate 2011
dc.date.none.fl_str_mv 2011-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022011000100002
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022011000100002
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1807-03022011000100002
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv Computational & Applied Mathematics v.30 n.1 2011
reponame:Computational & Applied Mathematics
instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron_str SBMAC
institution SBMAC
reponame_str Computational & Applied Mathematics
collection Computational & Applied Mathematics
repository.name.fl_str_mv Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
repository.mail.fl_str_mv ||sbmac@sbmac.org.br
_version_ 1754734890229694464