An efficient Newton-type method with fifth-order convergence for solving nonlinear equations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022008000300003 |
Resumo: | In this paper, we present an efficient Newton-like method with fifth-order convergence for nonlinear equations. The algorithm is free from second derivative and it requires four evaluations of the given function and its first derivative at each iteration. As a consequence, its efficiency index is equal to 4√5 which is better than that of Newton's method √2. Several examples demonstrate that the presented algorithm is more efficient and performs better than Newton's method. |
id |
SBMAC-2_5a94a1d74b1718138fd5e1a6cc441efe |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022008000300003 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
An efficient Newton-type method with fifth-order convergence for solving nonlinear equationsNewton's methoditerative methodnonlinear equationsorder of convergenceIn this paper, we present an efficient Newton-like method with fifth-order convergence for nonlinear equations. The algorithm is free from second derivative and it requires four evaluations of the given function and its first derivative at each iteration. As a consequence, its efficiency index is equal to 4√5 which is better than that of Newton's method √2. Several examples demonstrate that the presented algorithm is more efficient and performs better than Newton's method.Sociedade Brasileira de Matemática Aplicada e Computacional2008-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022008000300003Computational & Applied Mathematics v.27 n.3 2008reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMACinfo:eu-repo/semantics/openAccessFang,LiangSun,LiHe,Guopingeng2008-10-29T00:00:00Zoai:scielo:S1807-03022008000300003Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2008-10-29T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
An efficient Newton-type method with fifth-order convergence for solving nonlinear equations |
title |
An efficient Newton-type method with fifth-order convergence for solving nonlinear equations |
spellingShingle |
An efficient Newton-type method with fifth-order convergence for solving nonlinear equations Fang,Liang Newton's method iterative method nonlinear equations order of convergence |
title_short |
An efficient Newton-type method with fifth-order convergence for solving nonlinear equations |
title_full |
An efficient Newton-type method with fifth-order convergence for solving nonlinear equations |
title_fullStr |
An efficient Newton-type method with fifth-order convergence for solving nonlinear equations |
title_full_unstemmed |
An efficient Newton-type method with fifth-order convergence for solving nonlinear equations |
title_sort |
An efficient Newton-type method with fifth-order convergence for solving nonlinear equations |
author |
Fang,Liang |
author_facet |
Fang,Liang Sun,Li He,Guoping |
author_role |
author |
author2 |
Sun,Li He,Guoping |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Fang,Liang Sun,Li He,Guoping |
dc.subject.por.fl_str_mv |
Newton's method iterative method nonlinear equations order of convergence |
topic |
Newton's method iterative method nonlinear equations order of convergence |
description |
In this paper, we present an efficient Newton-like method with fifth-order convergence for nonlinear equations. The algorithm is free from second derivative and it requires four evaluations of the given function and its first derivative at each iteration. As a consequence, its efficiency index is equal to 4√5 which is better than that of Newton's method √2. Several examples demonstrate that the presented algorithm is more efficient and performs better than Newton's method. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022008000300003 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022008000300003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.27 n.3 2008 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734890170974208 |