On the convergence properties of the projected gradient method for convex optimization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000100003 |
Resumo: | When applied to an unconstrained minimization problem with a convex objective, the steepest descent method has stronger convergence properties than in the noncovex case: the whole sequence converges to an optimal solution under the only hypothesis of existence of minimizers (i.e. without assuming e.g. boundedness of the level sets). In this paper we look at the projected gradient method for constrained convex minimization. Convergence of the whole sequence to a minimizer assuming only existence of solutions has also been already established for the variant in which the stepsizes are exogenously given and square summable. In this paper, we prove the result for the more standard (and also more efficient) variant, namely the one in which the stepsizes are determined through an Armijo search. |
id |
SBMAC-2_8fc166507eafbeba199764412b75dbe3 |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022003000100003 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
On the convergence properties of the projected gradient method for convex optimizationprojected gradient methodconvex optimizationquasi-Fejér convergenceWhen applied to an unconstrained minimization problem with a convex objective, the steepest descent method has stronger convergence properties than in the noncovex case: the whole sequence converges to an optimal solution under the only hypothesis of existence of minimizers (i.e. without assuming e.g. boundedness of the level sets). In this paper we look at the projected gradient method for constrained convex minimization. Convergence of the whole sequence to a minimizer assuming only existence of solutions has also been already established for the variant in which the stepsizes are exogenously given and square summable. In this paper, we prove the result for the more standard (and also more efficient) variant, namely the one in which the stepsizes are determined through an Armijo search.Sociedade Brasileira de Matemática Aplicada e Computacional2003-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000100003Computational & Applied Mathematics v.22 n.1 2003reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMACinfo:eu-repo/semantics/openAccessIusem,A. N.eng2004-07-19T00:00:00Zoai:scielo:S1807-03022003000100003Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2004-07-19T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
On the convergence properties of the projected gradient method for convex optimization |
title |
On the convergence properties of the projected gradient method for convex optimization |
spellingShingle |
On the convergence properties of the projected gradient method for convex optimization Iusem,A. N. projected gradient method convex optimization quasi-Fejér convergence |
title_short |
On the convergence properties of the projected gradient method for convex optimization |
title_full |
On the convergence properties of the projected gradient method for convex optimization |
title_fullStr |
On the convergence properties of the projected gradient method for convex optimization |
title_full_unstemmed |
On the convergence properties of the projected gradient method for convex optimization |
title_sort |
On the convergence properties of the projected gradient method for convex optimization |
author |
Iusem,A. N. |
author_facet |
Iusem,A. N. |
author_role |
author |
dc.contributor.author.fl_str_mv |
Iusem,A. N. |
dc.subject.por.fl_str_mv |
projected gradient method convex optimization quasi-Fejér convergence |
topic |
projected gradient method convex optimization quasi-Fejér convergence |
description |
When applied to an unconstrained minimization problem with a convex objective, the steepest descent method has stronger convergence properties than in the noncovex case: the whole sequence converges to an optimal solution under the only hypothesis of existence of minimizers (i.e. without assuming e.g. boundedness of the level sets). In this paper we look at the projected gradient method for constrained convex minimization. Convergence of the whole sequence to a minimizer assuming only existence of solutions has also been already established for the variant in which the stepsizes are exogenously given and square summable. In this paper, we prove the result for the more standard (and also more efficient) variant, namely the one in which the stepsizes are determined through an Armijo search. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000100003 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000100003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.22 n.1 2003 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734889648783360 |