On the convergence properties of the projected gradient method for convex optimization

Detalhes bibliográficos
Autor(a) principal: Iusem,A. N.
Data de Publicação: 2003
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Computational & Applied Mathematics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000100003
Resumo: When applied to an unconstrained minimization problem with a convex objective, the steepest descent method has stronger convergence properties than in the noncovex case: the whole sequence converges to an optimal solution under the only hypothesis of existence of minimizers (i.e. without assuming e.g. boundedness of the level sets). In this paper we look at the projected gradient method for constrained convex minimization. Convergence of the whole sequence to a minimizer assuming only existence of solutions has also been already established for the variant in which the stepsizes are exogenously given and square summable. In this paper, we prove the result for the more standard (and also more efficient) variant, namely the one in which the stepsizes are determined through an Armijo search.
id SBMAC-2_8fc166507eafbeba199764412b75dbe3
oai_identifier_str oai:scielo:S1807-03022003000100003
network_acronym_str SBMAC-2
network_name_str Computational & Applied Mathematics
repository_id_str
spelling On the convergence properties of the projected gradient method for convex optimizationprojected gradient methodconvex optimizationquasi-Fejér convergenceWhen applied to an unconstrained minimization problem with a convex objective, the steepest descent method has stronger convergence properties than in the noncovex case: the whole sequence converges to an optimal solution under the only hypothesis of existence of minimizers (i.e. without assuming e.g. boundedness of the level sets). In this paper we look at the projected gradient method for constrained convex minimization. Convergence of the whole sequence to a minimizer assuming only existence of solutions has also been already established for the variant in which the stepsizes are exogenously given and square summable. In this paper, we prove the result for the more standard (and also more efficient) variant, namely the one in which the stepsizes are determined through an Armijo search.Sociedade Brasileira de Matemática Aplicada e Computacional2003-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000100003Computational & Applied Mathematics v.22 n.1 2003reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMACinfo:eu-repo/semantics/openAccessIusem,A. N.eng2004-07-19T00:00:00Zoai:scielo:S1807-03022003000100003Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2004-07-19T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false
dc.title.none.fl_str_mv On the convergence properties of the projected gradient method for convex optimization
title On the convergence properties of the projected gradient method for convex optimization
spellingShingle On the convergence properties of the projected gradient method for convex optimization
Iusem,A. N.
projected gradient method
convex optimization
quasi-Fejér convergence
title_short On the convergence properties of the projected gradient method for convex optimization
title_full On the convergence properties of the projected gradient method for convex optimization
title_fullStr On the convergence properties of the projected gradient method for convex optimization
title_full_unstemmed On the convergence properties of the projected gradient method for convex optimization
title_sort On the convergence properties of the projected gradient method for convex optimization
author Iusem,A. N.
author_facet Iusem,A. N.
author_role author
dc.contributor.author.fl_str_mv Iusem,A. N.
dc.subject.por.fl_str_mv projected gradient method
convex optimization
quasi-Fejér convergence
topic projected gradient method
convex optimization
quasi-Fejér convergence
description When applied to an unconstrained minimization problem with a convex objective, the steepest descent method has stronger convergence properties than in the noncovex case: the whole sequence converges to an optimal solution under the only hypothesis of existence of minimizers (i.e. without assuming e.g. boundedness of the level sets). In this paper we look at the projected gradient method for constrained convex minimization. Convergence of the whole sequence to a minimizer assuming only existence of solutions has also been already established for the variant in which the stepsizes are exogenously given and square summable. In this paper, we prove the result for the more standard (and also more efficient) variant, namely the one in which the stepsizes are determined through an Armijo search.
publishDate 2003
dc.date.none.fl_str_mv 2003-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000100003
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000100003
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv Computational & Applied Mathematics v.22 n.1 2003
reponame:Computational & Applied Mathematics
instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron_str SBMAC
institution SBMAC
reponame_str Computational & Applied Mathematics
collection Computational & Applied Mathematics
repository.name.fl_str_mv Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
repository.mail.fl_str_mv ||sbmac@sbmac.org.br
_version_ 1754734889648783360