Finding the closest Toeplitz matrix

Detalhes bibliográficos
Autor(a) principal: Eberle,Maria Gabriela
Data de Publicação: 2003
Outros Autores: Maciel,Maria Cristina
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Computational & Applied Mathematics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000100001
Resumo: The constrained least-squares n × n-matrix problem where the feasibility set is the subspace of the Toeplitz matrices is analyzed. The general, the upper and lower triangular cases are solved by making use of the singular value decomposition. For the symmetric case, an algorithm based on the alternate projection method is proposed. The implementation does not require the calculation of the eigenvalue of a matrix and still guarantees convergence. Encouraging preliminary results are discussed.
id SBMAC-2_b22daf66eb0230e0f58cfde903c0b9ca
oai_identifier_str oai:scielo:S1807-03022003000100001
network_acronym_str SBMAC-2
network_name_str Computational & Applied Mathematics
repository_id_str
spelling Finding the closest Toeplitz matrixconstrained least squaresToeplitz matrixsingular value decompositionalternate projection methodThe constrained least-squares n × n-matrix problem where the feasibility set is the subspace of the Toeplitz matrices is analyzed. The general, the upper and lower triangular cases are solved by making use of the singular value decomposition. For the symmetric case, an algorithm based on the alternate projection method is proposed. The implementation does not require the calculation of the eigenvalue of a matrix and still guarantees convergence. Encouraging preliminary results are discussed.Sociedade Brasileira de Matemática Aplicada e Computacional2003-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000100001Computational & Applied Mathematics v.22 n.1 2003reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMACinfo:eu-repo/semantics/openAccessEberle,Maria GabrielaMaciel,Maria Cristinaeng2004-07-19T00:00:00Zoai:scielo:S1807-03022003000100001Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2004-07-19T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false
dc.title.none.fl_str_mv Finding the closest Toeplitz matrix
title Finding the closest Toeplitz matrix
spellingShingle Finding the closest Toeplitz matrix
Eberle,Maria Gabriela
constrained least squares
Toeplitz matrix
singular value decomposition
alternate projection method
title_short Finding the closest Toeplitz matrix
title_full Finding the closest Toeplitz matrix
title_fullStr Finding the closest Toeplitz matrix
title_full_unstemmed Finding the closest Toeplitz matrix
title_sort Finding the closest Toeplitz matrix
author Eberle,Maria Gabriela
author_facet Eberle,Maria Gabriela
Maciel,Maria Cristina
author_role author
author2 Maciel,Maria Cristina
author2_role author
dc.contributor.author.fl_str_mv Eberle,Maria Gabriela
Maciel,Maria Cristina
dc.subject.por.fl_str_mv constrained least squares
Toeplitz matrix
singular value decomposition
alternate projection method
topic constrained least squares
Toeplitz matrix
singular value decomposition
alternate projection method
description The constrained least-squares n × n-matrix problem where the feasibility set is the subspace of the Toeplitz matrices is analyzed. The general, the upper and lower triangular cases are solved by making use of the singular value decomposition. For the symmetric case, an algorithm based on the alternate projection method is proposed. The implementation does not require the calculation of the eigenvalue of a matrix and still guarantees convergence. Encouraging preliminary results are discussed.
publishDate 2003
dc.date.none.fl_str_mv 2003-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000100001
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000100001
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv Computational & Applied Mathematics v.22 n.1 2003
reponame:Computational & Applied Mathematics
instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron_str SBMAC
institution SBMAC
reponame_str Computational & Applied Mathematics
collection Computational & Applied Mathematics
repository.name.fl_str_mv Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
repository.mail.fl_str_mv ||sbmac@sbmac.org.br
_version_ 1754734889642491904