Finding the closest Toeplitz matrix
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000100001 |
Resumo: | The constrained least-squares n × n-matrix problem where the feasibility set is the subspace of the Toeplitz matrices is analyzed. The general, the upper and lower triangular cases are solved by making use of the singular value decomposition. For the symmetric case, an algorithm based on the alternate projection method is proposed. The implementation does not require the calculation of the eigenvalue of a matrix and still guarantees convergence. Encouraging preliminary results are discussed. |
id |
SBMAC-2_b22daf66eb0230e0f58cfde903c0b9ca |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022003000100001 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
Finding the closest Toeplitz matrixconstrained least squaresToeplitz matrixsingular value decompositionalternate projection methodThe constrained least-squares n × n-matrix problem where the feasibility set is the subspace of the Toeplitz matrices is analyzed. The general, the upper and lower triangular cases are solved by making use of the singular value decomposition. For the symmetric case, an algorithm based on the alternate projection method is proposed. The implementation does not require the calculation of the eigenvalue of a matrix and still guarantees convergence. Encouraging preliminary results are discussed.Sociedade Brasileira de Matemática Aplicada e Computacional2003-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000100001Computational & Applied Mathematics v.22 n.1 2003reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMACinfo:eu-repo/semantics/openAccessEberle,Maria GabrielaMaciel,Maria Cristinaeng2004-07-19T00:00:00Zoai:scielo:S1807-03022003000100001Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2004-07-19T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
Finding the closest Toeplitz matrix |
title |
Finding the closest Toeplitz matrix |
spellingShingle |
Finding the closest Toeplitz matrix Eberle,Maria Gabriela constrained least squares Toeplitz matrix singular value decomposition alternate projection method |
title_short |
Finding the closest Toeplitz matrix |
title_full |
Finding the closest Toeplitz matrix |
title_fullStr |
Finding the closest Toeplitz matrix |
title_full_unstemmed |
Finding the closest Toeplitz matrix |
title_sort |
Finding the closest Toeplitz matrix |
author |
Eberle,Maria Gabriela |
author_facet |
Eberle,Maria Gabriela Maciel,Maria Cristina |
author_role |
author |
author2 |
Maciel,Maria Cristina |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Eberle,Maria Gabriela Maciel,Maria Cristina |
dc.subject.por.fl_str_mv |
constrained least squares Toeplitz matrix singular value decomposition alternate projection method |
topic |
constrained least squares Toeplitz matrix singular value decomposition alternate projection method |
description |
The constrained least-squares n × n-matrix problem where the feasibility set is the subspace of the Toeplitz matrices is analyzed. The general, the upper and lower triangular cases are solved by making use of the singular value decomposition. For the symmetric case, an algorithm based on the alternate projection method is proposed. The implementation does not require the calculation of the eigenvalue of a matrix and still guarantees convergence. Encouraging preliminary results are discussed. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000100001 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000100001 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.22 n.1 2003 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734889642491904 |