Lavrentiev-prox-regularization for optimal controlof PDEs with state constraints
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022009000200006 |
Resumo: | A Lavrentiev prox-regularization method for optimal control problems with point-wise state constraints is introduced where both the objective function and the constraints are regularized. The convergence of the controls generated by the iterative Lavrentiev prox-regularization algorithm is studied. For a sequence of regularization parameters that converges to zero, strong convergence of the generated control sequence to the optimal control is proved. Due to the proxcharacter of the proposed regularization, the feasibility of the iterates for a given parameter can be improved compared with the non-prox Lavrentiev-Regularization. |
id |
SBMAC-2_d4c2dcd5397f9595bcf34c6a05f97c81 |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022009000200006 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
Lavrentiev-prox-regularization for optimal controlof PDEs with state constraintsoptimal controlpointwise state constraintsprox regularizationLavrentiev regularizationpde constrained optimizationconvergencefeasibilityA Lavrentiev prox-regularization method for optimal control problems with point-wise state constraints is introduced where both the objective function and the constraints are regularized. The convergence of the controls generated by the iterative Lavrentiev prox-regularization algorithm is studied. For a sequence of regularization parameters that converges to zero, strong convergence of the generated control sequence to the optimal control is proved. Due to the proxcharacter of the proposed regularization, the feasibility of the iterates for a given parameter can be improved compared with the non-prox Lavrentiev-Regularization.Sociedade Brasileira de Matemática Aplicada e Computacional2009-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022009000200006Computational & Applied Mathematics v.28 n.2 2009reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMAC10.1590/S1807-03022009000200006info:eu-repo/semantics/openAccessGugat,Martineng2009-07-08T00:00:00Zoai:scielo:S1807-03022009000200006Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2009-07-08T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
Lavrentiev-prox-regularization for optimal controlof PDEs with state constraints |
title |
Lavrentiev-prox-regularization for optimal controlof PDEs with state constraints |
spellingShingle |
Lavrentiev-prox-regularization for optimal controlof PDEs with state constraints Gugat,Martin optimal control pointwise state constraints prox regularization Lavrentiev regularization pde constrained optimization convergence feasibility |
title_short |
Lavrentiev-prox-regularization for optimal controlof PDEs with state constraints |
title_full |
Lavrentiev-prox-regularization for optimal controlof PDEs with state constraints |
title_fullStr |
Lavrentiev-prox-regularization for optimal controlof PDEs with state constraints |
title_full_unstemmed |
Lavrentiev-prox-regularization for optimal controlof PDEs with state constraints |
title_sort |
Lavrentiev-prox-regularization for optimal controlof PDEs with state constraints |
author |
Gugat,Martin |
author_facet |
Gugat,Martin |
author_role |
author |
dc.contributor.author.fl_str_mv |
Gugat,Martin |
dc.subject.por.fl_str_mv |
optimal control pointwise state constraints prox regularization Lavrentiev regularization pde constrained optimization convergence feasibility |
topic |
optimal control pointwise state constraints prox regularization Lavrentiev regularization pde constrained optimization convergence feasibility |
description |
A Lavrentiev prox-regularization method for optimal control problems with point-wise state constraints is introduced where both the objective function and the constraints are regularized. The convergence of the controls generated by the iterative Lavrentiev prox-regularization algorithm is studied. For a sequence of regularization parameters that converges to zero, strong convergence of the generated control sequence to the optimal control is proved. Due to the proxcharacter of the proposed regularization, the feasibility of the iterates for a given parameter can be improved compared with the non-prox Lavrentiev-Regularization. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022009000200006 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022009000200006 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1807-03022009000200006 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.28 n.2 2009 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734890188800000 |