On the divergence of line search methods
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022007000100006 |
Resumo: | We discuss the convergence of line search methods for minimization. We explain how Newton's method and the BFGS method can fail even if the restrictions of the objective function to the search lines are strictly convex functions, the level sets of the objective functions are compact, the line searches are exact and the Wolfe conditions are satisfied. This explanation illustrates a new way to combine general mathematical concepts and symbolic computation to analyze the convergence of line search methods. It also illustrate the limitations of the asymptotic analysis of the iterates of nonlinear programming algorithms. |
id |
SBMAC-2_e094dc26f066915597a8011fcabda1e9 |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022007000100006 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
On the divergence of line search methodsline search methodsconvergenceWe discuss the convergence of line search methods for minimization. We explain how Newton's method and the BFGS method can fail even if the restrictions of the objective function to the search lines are strictly convex functions, the level sets of the objective functions are compact, the line searches are exact and the Wolfe conditions are satisfied. This explanation illustrates a new way to combine general mathematical concepts and symbolic computation to analyze the convergence of line search methods. It also illustrate the limitations of the asymptotic analysis of the iterates of nonlinear programming algorithms.Sociedade Brasileira de Matemática Aplicada e Computacional2007-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022007000100006Computational & Applied Mathematics v.26 n.1 2007reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMACinfo:eu-repo/semantics/openAccessMascarenhas,Walter F.eng2007-05-10T00:00:00Zoai:scielo:S1807-03022007000100006Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2007-05-10T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
On the divergence of line search methods |
title |
On the divergence of line search methods |
spellingShingle |
On the divergence of line search methods Mascarenhas,Walter F. line search methods convergence |
title_short |
On the divergence of line search methods |
title_full |
On the divergence of line search methods |
title_fullStr |
On the divergence of line search methods |
title_full_unstemmed |
On the divergence of line search methods |
title_sort |
On the divergence of line search methods |
author |
Mascarenhas,Walter F. |
author_facet |
Mascarenhas,Walter F. |
author_role |
author |
dc.contributor.author.fl_str_mv |
Mascarenhas,Walter F. |
dc.subject.por.fl_str_mv |
line search methods convergence |
topic |
line search methods convergence |
description |
We discuss the convergence of line search methods for minimization. We explain how Newton's method and the BFGS method can fail even if the restrictions of the objective function to the search lines are strictly convex functions, the level sets of the objective functions are compact, the line searches are exact and the Wolfe conditions are satisfied. This explanation illustrates a new way to combine general mathematical concepts and symbolic computation to analyze the convergence of line search methods. It also illustrate the limitations of the asymptotic analysis of the iterates of nonlinear programming algorithms. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022007000100006 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022007000100006 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.26 n.1 2007 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734889830187008 |