Adaptive basis selection for functional data analysis via stochastic penalization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000200004 |
Resumo: | We propose an adaptive method of analyzing a collection of curves which can be, individually, modeled as a linear combination of spline basis functions. Through the introduction of latent Bernoulli variables, the number of basis functions, the variance of the error measurements and the coefficients of the expansion are determined. We provide a modification of the stochastic EM algorithm for which numerical results show that the estimates are very close to the true curve in the sense of L2 norm. |
id |
SBMAC-2_e095b63a74cb799df4d061e8a15d3fd5 |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022005000200004 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
Adaptive basis selection for functional data analysis via stochastic penalizationbasis functionsSEM algorithmfunctional statisticssummary measuressplinesnon-parametric data analysisregistrationWe propose an adaptive method of analyzing a collection of curves which can be, individually, modeled as a linear combination of spline basis functions. Through the introduction of latent Bernoulli variables, the number of basis functions, the variance of the error measurements and the coefficients of the expansion are determined. We provide a modification of the stochastic EM algorithm for which numerical results show that the estimates are very close to the true curve in the sense of L2 norm.Sociedade Brasileira de Matemática Aplicada e Computacional2005-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000200004Computational & Applied Mathematics v.24 n.2 2005reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMAC10.1590/S0101-82052005000200004info:eu-repo/semantics/openAccessAnselmo,Cezar A.F.Dias,RonaldoGarcia,Nancy L.eng2005-11-07T00:00:00Zoai:scielo:S1807-03022005000200004Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2005-11-07T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
Adaptive basis selection for functional data analysis via stochastic penalization |
title |
Adaptive basis selection for functional data analysis via stochastic penalization |
spellingShingle |
Adaptive basis selection for functional data analysis via stochastic penalization Anselmo,Cezar A.F. basis functions SEM algorithm functional statistics summary measures splines non-parametric data analysis registration |
title_short |
Adaptive basis selection for functional data analysis via stochastic penalization |
title_full |
Adaptive basis selection for functional data analysis via stochastic penalization |
title_fullStr |
Adaptive basis selection for functional data analysis via stochastic penalization |
title_full_unstemmed |
Adaptive basis selection for functional data analysis via stochastic penalization |
title_sort |
Adaptive basis selection for functional data analysis via stochastic penalization |
author |
Anselmo,Cezar A.F. |
author_facet |
Anselmo,Cezar A.F. Dias,Ronaldo Garcia,Nancy L. |
author_role |
author |
author2 |
Dias,Ronaldo Garcia,Nancy L. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Anselmo,Cezar A.F. Dias,Ronaldo Garcia,Nancy L. |
dc.subject.por.fl_str_mv |
basis functions SEM algorithm functional statistics summary measures splines non-parametric data analysis registration |
topic |
basis functions SEM algorithm functional statistics summary measures splines non-parametric data analysis registration |
description |
We propose an adaptive method of analyzing a collection of curves which can be, individually, modeled as a linear combination of spline basis functions. Through the introduction of latent Bernoulli variables, the number of basis functions, the variance of the error measurements and the coefficients of the expansion are determined. We provide a modification of the stochastic EM algorithm for which numerical results show that the estimates are very close to the true curve in the sense of L2 norm. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000200004 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000200004 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0101-82052005000200004 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.24 n.2 2005 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734889734766592 |