THE EARLY WARNING MODEL OF TRACK AND FIELD SPORTS BASED ON RBF NEURAL NETWORK ALGORITHM

Detalhes bibliográficos
Autor(a) principal: Wen,Heqiong
Data de Publicação: 2021
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista brasileira de medicina do esporte (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922021000500523
Resumo: ABSTRACT Background: Athletics plays a very important role in competitive sports. The strength of track and field directly represents the level of a country's sports competition. Objective: This work aimed to study the track and field sports forewarning model based on radial basis function (RBF) neural networks. One hundred outstanding athletes were taken as the research objects. The questionnaire survey method was adopted to count athletes’ injury risk factors, and coaches were consulted to evaluate the questionnaire's overall quality, structure, and content. Methods: A track and field early warning model based on RBF neural network is established, and the results are analyzed. Results: The results showed that the number of people who thought the questionnaire was relatively complete (92%) was considerably higher than that of very complete (2%) and relatively complete (6%) (P<0.05). The number of people who thought that the questionnaire structure was relatively perfect (45%) was notably higher than that of the very perfect (18%) (P<0.05). The semi-reliability test result suggested that the questionnaire reliability was 0.85. Tests on ten samples showed that the RBF neural network model error and the actual results were basically controlled between −0.04~0.04. Conclusions: After the sample library test, the track and field sports forewarning model under RBF neural network can obtain relatively favorable results. Level of evidence II; Therapeutic studies - investigation of treatment results.
id SBMEE-1_4e52bdf60dccd44c11e9e092dd442b8a
oai_identifier_str oai:scielo:S1517-86922021000500523
network_acronym_str SBMEE-1
network_name_str Revista brasileira de medicina do esporte (Online)
repository_id_str
spelling THE EARLY WARNING MODEL OF TRACK AND FIELD SPORTS BASED ON RBF NEURAL NETWORK ALGORITHMTrack and fieldWound and injuriesForewarning modelABSTRACT Background: Athletics plays a very important role in competitive sports. The strength of track and field directly represents the level of a country's sports competition. Objective: This work aimed to study the track and field sports forewarning model based on radial basis function (RBF) neural networks. One hundred outstanding athletes were taken as the research objects. The questionnaire survey method was adopted to count athletes’ injury risk factors, and coaches were consulted to evaluate the questionnaire's overall quality, structure, and content. Methods: A track and field early warning model based on RBF neural network is established, and the results are analyzed. Results: The results showed that the number of people who thought the questionnaire was relatively complete (92%) was considerably higher than that of very complete (2%) and relatively complete (6%) (P<0.05). The number of people who thought that the questionnaire structure was relatively perfect (45%) was notably higher than that of the very perfect (18%) (P<0.05). The semi-reliability test result suggested that the questionnaire reliability was 0.85. Tests on ten samples showed that the RBF neural network model error and the actual results were basically controlled between −0.04~0.04. Conclusions: After the sample library test, the track and field sports forewarning model under RBF neural network can obtain relatively favorable results. Level of evidence II; Therapeutic studies - investigation of treatment results.Sociedade Brasileira de Medicina do Exercício e do Esporte2021-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922021000500523Revista Brasileira de Medicina do Esporte v.27 n.5 2021reponame:Revista brasileira de medicina do esporte (Online)instname:Sociedade Brasileira de Medicina do Exercício e do Esporte (SBMEE)instacron:SBMEE10.1590/1517-8692202127042021_0117info:eu-repo/semantics/openAccessWen,Heqiongeng2021-11-24T00:00:00Zoai:scielo:S1517-86922021000500523Revistahttp://www.scielo.br/rbmeONGhttps://old.scielo.br/oai/scielo-oai.php||revista@medicinadoesporte.org.br1806-99401517-8692opendoar:2021-11-24T00:00Revista brasileira de medicina do esporte (Online) - Sociedade Brasileira de Medicina do Exercício e do Esporte (SBMEE)false
dc.title.none.fl_str_mv THE EARLY WARNING MODEL OF TRACK AND FIELD SPORTS BASED ON RBF NEURAL NETWORK ALGORITHM
title THE EARLY WARNING MODEL OF TRACK AND FIELD SPORTS BASED ON RBF NEURAL NETWORK ALGORITHM
spellingShingle THE EARLY WARNING MODEL OF TRACK AND FIELD SPORTS BASED ON RBF NEURAL NETWORK ALGORITHM
Wen,Heqiong
Track and field
Wound and injuries
Forewarning model
title_short THE EARLY WARNING MODEL OF TRACK AND FIELD SPORTS BASED ON RBF NEURAL NETWORK ALGORITHM
title_full THE EARLY WARNING MODEL OF TRACK AND FIELD SPORTS BASED ON RBF NEURAL NETWORK ALGORITHM
title_fullStr THE EARLY WARNING MODEL OF TRACK AND FIELD SPORTS BASED ON RBF NEURAL NETWORK ALGORITHM
title_full_unstemmed THE EARLY WARNING MODEL OF TRACK AND FIELD SPORTS BASED ON RBF NEURAL NETWORK ALGORITHM
title_sort THE EARLY WARNING MODEL OF TRACK AND FIELD SPORTS BASED ON RBF NEURAL NETWORK ALGORITHM
author Wen,Heqiong
author_facet Wen,Heqiong
author_role author
dc.contributor.author.fl_str_mv Wen,Heqiong
dc.subject.por.fl_str_mv Track and field
Wound and injuries
Forewarning model
topic Track and field
Wound and injuries
Forewarning model
description ABSTRACT Background: Athletics plays a very important role in competitive sports. The strength of track and field directly represents the level of a country's sports competition. Objective: This work aimed to study the track and field sports forewarning model based on radial basis function (RBF) neural networks. One hundred outstanding athletes were taken as the research objects. The questionnaire survey method was adopted to count athletes’ injury risk factors, and coaches were consulted to evaluate the questionnaire's overall quality, structure, and content. Methods: A track and field early warning model based on RBF neural network is established, and the results are analyzed. Results: The results showed that the number of people who thought the questionnaire was relatively complete (92%) was considerably higher than that of very complete (2%) and relatively complete (6%) (P<0.05). The number of people who thought that the questionnaire structure was relatively perfect (45%) was notably higher than that of the very perfect (18%) (P<0.05). The semi-reliability test result suggested that the questionnaire reliability was 0.85. Tests on ten samples showed that the RBF neural network model error and the actual results were basically controlled between −0.04~0.04. Conclusions: After the sample library test, the track and field sports forewarning model under RBF neural network can obtain relatively favorable results. Level of evidence II; Therapeutic studies - investigation of treatment results.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922021000500523
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922021000500523
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1517-8692202127042021_0117
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Medicina do Exercício e do Esporte
publisher.none.fl_str_mv Sociedade Brasileira de Medicina do Exercício e do Esporte
dc.source.none.fl_str_mv Revista Brasileira de Medicina do Esporte v.27 n.5 2021
reponame:Revista brasileira de medicina do esporte (Online)
instname:Sociedade Brasileira de Medicina do Exercício e do Esporte (SBMEE)
instacron:SBMEE
instname_str Sociedade Brasileira de Medicina do Exercício e do Esporte (SBMEE)
instacron_str SBMEE
institution SBMEE
reponame_str Revista brasileira de medicina do esporte (Online)
collection Revista brasileira de medicina do esporte (Online)
repository.name.fl_str_mv Revista brasileira de medicina do esporte (Online) - Sociedade Brasileira de Medicina do Exercício e do Esporte (SBMEE)
repository.mail.fl_str_mv ||revista@medicinadoesporte.org.br
_version_ 1752122237719150592