APPLICATION OF BACK PROPAGATION NEURAL NETWORK IN SPORTS FATIGUE INDICATORS

Detalhes bibliográficos
Autor(a) principal: Wang,Xiaoli
Data de Publicação: 2021
Outros Autores: Dai,Chunmin
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista brasileira de medicina do esporte (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922021000300249
Resumo: ABSTRACT Introduction High-intensity rehabilitation training will produce exercise fatigue. Objective A backpropagation (BP) network neural algorithm is proposed to predict sports fatigue based on electromyography (EMG) signal images. Methods The principal component analysis algorithm is used to reduce the dimension of EMG signal features. The knee joint angle is estimated by the regularized over-limit learning machine algorithm and the BP neural network algorithm. Results The RMSE value of the regularized over-limit learning machine algorithm is lower than that of the BP neural network algorithm. At the same time, the ρ value of the regularized over-limit learning machine algorithm is closer to 1, indicating its higher accuracy. Conclusions The model training time of the regularized over-limit learning machine algorithm has been greatly reduced, which improves efficiency. Level of evidence II; Therapeutic studies - investigation of treatment results.
id SBMEE-1_fe5c71f4dd299fb527b9ac1ed1105a3e
oai_identifier_str oai:scielo:S1517-86922021000300249
network_acronym_str SBMEE-1
network_name_str Revista brasileira de medicina do esporte (Online)
repository_id_str
spelling APPLICATION OF BACK PROPAGATION NEURAL NETWORK IN SPORTS FATIGUE INDICATORSExercise,high-intensityFatigueKnee JointABSTRACT Introduction High-intensity rehabilitation training will produce exercise fatigue. Objective A backpropagation (BP) network neural algorithm is proposed to predict sports fatigue based on electromyography (EMG) signal images. Methods The principal component analysis algorithm is used to reduce the dimension of EMG signal features. The knee joint angle is estimated by the regularized over-limit learning machine algorithm and the BP neural network algorithm. Results The RMSE value of the regularized over-limit learning machine algorithm is lower than that of the BP neural network algorithm. At the same time, the ρ value of the regularized over-limit learning machine algorithm is closer to 1, indicating its higher accuracy. Conclusions The model training time of the regularized over-limit learning machine algorithm has been greatly reduced, which improves efficiency. Level of evidence II; Therapeutic studies - investigation of treatment results.Sociedade Brasileira de Medicina do Exercício e do Esporte2021-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922021000300249Revista Brasileira de Medicina do Esporte v.27 n.3 2021reponame:Revista brasileira de medicina do esporte (Online)instname:Sociedade Brasileira de Medicina do Exercício e do Esporte (SBMEE)instacron:SBMEE10.1590/1517-8692202127032021_0127info:eu-repo/semantics/openAccessWang,XiaoliDai,Chunmineng2021-07-21T00:00:00Zoai:scielo:S1517-86922021000300249Revistahttp://www.scielo.br/rbmeONGhttps://old.scielo.br/oai/scielo-oai.php||revista@medicinadoesporte.org.br1806-99401517-8692opendoar:2021-07-21T00:00Revista brasileira de medicina do esporte (Online) - Sociedade Brasileira de Medicina do Exercício e do Esporte (SBMEE)false
dc.title.none.fl_str_mv APPLICATION OF BACK PROPAGATION NEURAL NETWORK IN SPORTS FATIGUE INDICATORS
title APPLICATION OF BACK PROPAGATION NEURAL NETWORK IN SPORTS FATIGUE INDICATORS
spellingShingle APPLICATION OF BACK PROPAGATION NEURAL NETWORK IN SPORTS FATIGUE INDICATORS
Wang,Xiaoli
Exercise,high-intensity
Fatigue
Knee Joint
title_short APPLICATION OF BACK PROPAGATION NEURAL NETWORK IN SPORTS FATIGUE INDICATORS
title_full APPLICATION OF BACK PROPAGATION NEURAL NETWORK IN SPORTS FATIGUE INDICATORS
title_fullStr APPLICATION OF BACK PROPAGATION NEURAL NETWORK IN SPORTS FATIGUE INDICATORS
title_full_unstemmed APPLICATION OF BACK PROPAGATION NEURAL NETWORK IN SPORTS FATIGUE INDICATORS
title_sort APPLICATION OF BACK PROPAGATION NEURAL NETWORK IN SPORTS FATIGUE INDICATORS
author Wang,Xiaoli
author_facet Wang,Xiaoli
Dai,Chunmin
author_role author
author2 Dai,Chunmin
author2_role author
dc.contributor.author.fl_str_mv Wang,Xiaoli
Dai,Chunmin
dc.subject.por.fl_str_mv Exercise,high-intensity
Fatigue
Knee Joint
topic Exercise,high-intensity
Fatigue
Knee Joint
description ABSTRACT Introduction High-intensity rehabilitation training will produce exercise fatigue. Objective A backpropagation (BP) network neural algorithm is proposed to predict sports fatigue based on electromyography (EMG) signal images. Methods The principal component analysis algorithm is used to reduce the dimension of EMG signal features. The knee joint angle is estimated by the regularized over-limit learning machine algorithm and the BP neural network algorithm. Results The RMSE value of the regularized over-limit learning machine algorithm is lower than that of the BP neural network algorithm. At the same time, the ρ value of the regularized over-limit learning machine algorithm is closer to 1, indicating its higher accuracy. Conclusions The model training time of the regularized over-limit learning machine algorithm has been greatly reduced, which improves efficiency. Level of evidence II; Therapeutic studies - investigation of treatment results.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922021000300249
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922021000300249
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1517-8692202127032021_0127
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Medicina do Exercício e do Esporte
publisher.none.fl_str_mv Sociedade Brasileira de Medicina do Exercício e do Esporte
dc.source.none.fl_str_mv Revista Brasileira de Medicina do Esporte v.27 n.3 2021
reponame:Revista brasileira de medicina do esporte (Online)
instname:Sociedade Brasileira de Medicina do Exercício e do Esporte (SBMEE)
instacron:SBMEE
instname_str Sociedade Brasileira de Medicina do Exercício e do Esporte (SBMEE)
instacron_str SBMEE
institution SBMEE
reponame_str Revista brasileira de medicina do esporte (Online)
collection Revista brasileira de medicina do esporte (Online)
repository.name.fl_str_mv Revista brasileira de medicina do esporte (Online) - Sociedade Brasileira de Medicina do Exercício e do Esporte (SBMEE)
repository.mail.fl_str_mv ||revista@medicinadoesporte.org.br
_version_ 1752122237620584448