APPLICATION OF BACK PROPAGATION NEURAL NETWORK IN SPORTS FATIGUE INDICATORS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista brasileira de medicina do esporte (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922021000300249 |
Resumo: | ABSTRACT Introduction High-intensity rehabilitation training will produce exercise fatigue. Objective A backpropagation (BP) network neural algorithm is proposed to predict sports fatigue based on electromyography (EMG) signal images. Methods The principal component analysis algorithm is used to reduce the dimension of EMG signal features. The knee joint angle is estimated by the regularized over-limit learning machine algorithm and the BP neural network algorithm. Results The RMSE value of the regularized over-limit learning machine algorithm is lower than that of the BP neural network algorithm. At the same time, the ρ value of the regularized over-limit learning machine algorithm is closer to 1, indicating its higher accuracy. Conclusions The model training time of the regularized over-limit learning machine algorithm has been greatly reduced, which improves efficiency. Level of evidence II; Therapeutic studies - investigation of treatment results. |
id |
SBMEE-1_fe5c71f4dd299fb527b9ac1ed1105a3e |
---|---|
oai_identifier_str |
oai:scielo:S1517-86922021000300249 |
network_acronym_str |
SBMEE-1 |
network_name_str |
Revista brasileira de medicina do esporte (Online) |
repository_id_str |
|
spelling |
APPLICATION OF BACK PROPAGATION NEURAL NETWORK IN SPORTS FATIGUE INDICATORSExercise,high-intensityFatigueKnee JointABSTRACT Introduction High-intensity rehabilitation training will produce exercise fatigue. Objective A backpropagation (BP) network neural algorithm is proposed to predict sports fatigue based on electromyography (EMG) signal images. Methods The principal component analysis algorithm is used to reduce the dimension of EMG signal features. The knee joint angle is estimated by the regularized over-limit learning machine algorithm and the BP neural network algorithm. Results The RMSE value of the regularized over-limit learning machine algorithm is lower than that of the BP neural network algorithm. At the same time, the ρ value of the regularized over-limit learning machine algorithm is closer to 1, indicating its higher accuracy. Conclusions The model training time of the regularized over-limit learning machine algorithm has been greatly reduced, which improves efficiency. Level of evidence II; Therapeutic studies - investigation of treatment results.Sociedade Brasileira de Medicina do Exercício e do Esporte2021-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922021000300249Revista Brasileira de Medicina do Esporte v.27 n.3 2021reponame:Revista brasileira de medicina do esporte (Online)instname:Sociedade Brasileira de Medicina do Exercício e do Esporte (SBMEE)instacron:SBMEE10.1590/1517-8692202127032021_0127info:eu-repo/semantics/openAccessWang,XiaoliDai,Chunmineng2021-07-21T00:00:00Zoai:scielo:S1517-86922021000300249Revistahttp://www.scielo.br/rbmeONGhttps://old.scielo.br/oai/scielo-oai.php||revista@medicinadoesporte.org.br1806-99401517-8692opendoar:2021-07-21T00:00Revista brasileira de medicina do esporte (Online) - Sociedade Brasileira de Medicina do Exercício e do Esporte (SBMEE)false |
dc.title.none.fl_str_mv |
APPLICATION OF BACK PROPAGATION NEURAL NETWORK IN SPORTS FATIGUE INDICATORS |
title |
APPLICATION OF BACK PROPAGATION NEURAL NETWORK IN SPORTS FATIGUE INDICATORS |
spellingShingle |
APPLICATION OF BACK PROPAGATION NEURAL NETWORK IN SPORTS FATIGUE INDICATORS Wang,Xiaoli Exercise,high-intensity Fatigue Knee Joint |
title_short |
APPLICATION OF BACK PROPAGATION NEURAL NETWORK IN SPORTS FATIGUE INDICATORS |
title_full |
APPLICATION OF BACK PROPAGATION NEURAL NETWORK IN SPORTS FATIGUE INDICATORS |
title_fullStr |
APPLICATION OF BACK PROPAGATION NEURAL NETWORK IN SPORTS FATIGUE INDICATORS |
title_full_unstemmed |
APPLICATION OF BACK PROPAGATION NEURAL NETWORK IN SPORTS FATIGUE INDICATORS |
title_sort |
APPLICATION OF BACK PROPAGATION NEURAL NETWORK IN SPORTS FATIGUE INDICATORS |
author |
Wang,Xiaoli |
author_facet |
Wang,Xiaoli Dai,Chunmin |
author_role |
author |
author2 |
Dai,Chunmin |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Wang,Xiaoli Dai,Chunmin |
dc.subject.por.fl_str_mv |
Exercise,high-intensity Fatigue Knee Joint |
topic |
Exercise,high-intensity Fatigue Knee Joint |
description |
ABSTRACT Introduction High-intensity rehabilitation training will produce exercise fatigue. Objective A backpropagation (BP) network neural algorithm is proposed to predict sports fatigue based on electromyography (EMG) signal images. Methods The principal component analysis algorithm is used to reduce the dimension of EMG signal features. The knee joint angle is estimated by the regularized over-limit learning machine algorithm and the BP neural network algorithm. Results The RMSE value of the regularized over-limit learning machine algorithm is lower than that of the BP neural network algorithm. At the same time, the ρ value of the regularized over-limit learning machine algorithm is closer to 1, indicating its higher accuracy. Conclusions The model training time of the regularized over-limit learning machine algorithm has been greatly reduced, which improves efficiency. Level of evidence II; Therapeutic studies - investigation of treatment results. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922021000300249 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922021000300249 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1517-8692202127032021_0127 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Medicina do Exercício e do Esporte |
publisher.none.fl_str_mv |
Sociedade Brasileira de Medicina do Exercício e do Esporte |
dc.source.none.fl_str_mv |
Revista Brasileira de Medicina do Esporte v.27 n.3 2021 reponame:Revista brasileira de medicina do esporte (Online) instname:Sociedade Brasileira de Medicina do Exercício e do Esporte (SBMEE) instacron:SBMEE |
instname_str |
Sociedade Brasileira de Medicina do Exercício e do Esporte (SBMEE) |
instacron_str |
SBMEE |
institution |
SBMEE |
reponame_str |
Revista brasileira de medicina do esporte (Online) |
collection |
Revista brasileira de medicina do esporte (Online) |
repository.name.fl_str_mv |
Revista brasileira de medicina do esporte (Online) - Sociedade Brasileira de Medicina do Exercício e do Esporte (SBMEE) |
repository.mail.fl_str_mv |
||revista@medicinadoesporte.org.br |
_version_ |
1752122237620584448 |