Precipitation trends analysis by Mann-Kendall test: a case study of Paraíba, Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Meteorologia (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862020000200187 |
Resumo: | Abstract This work aimed to select semivariogram models to estimate trends in monthly precipitation in Paraiba State-Brazil using ordinary kriging. The methodology involves the application of geostatistical interpolation of precipitation records of 51 years from 69 rainfall stations across the state. Analysis of semivariograms showed that specific months had a strong spatial dependence (Index of Spatial Dependence - IDE < 25%). The trends were subjected to the following models: circular, spherical, pentaspherical, exponential, Gaussian, rational quadratic, K-Bessel and tetraspherical. The best fit models were selected by cross-validation and Error Comparison Index (ECI). Each data set (month) had a particular spatial dependence structure, which made it necessary to define specific models of semivariogram in order to enhance the adjustment of the experimental semivariogram. Besides, the monthly trend map was plotted to justify the chosen models. |
id |
SBMET-1_12291dfd1ca46604bd4b0cfe4df4a905 |
---|---|
oai_identifier_str |
oai:scielo:S0102-77862020000200187 |
network_acronym_str |
SBMET-1 |
network_name_str |
Revista Brasileira de Meteorologia (Online) |
repository_id_str |
|
spelling |
Precipitation trends analysis by Mann-Kendall test: a case study of Paraíba, BrazilprecipitationtrendsParaíbageostatisticsAbstract This work aimed to select semivariogram models to estimate trends in monthly precipitation in Paraiba State-Brazil using ordinary kriging. The methodology involves the application of geostatistical interpolation of precipitation records of 51 years from 69 rainfall stations across the state. Analysis of semivariograms showed that specific months had a strong spatial dependence (Index of Spatial Dependence - IDE < 25%). The trends were subjected to the following models: circular, spherical, pentaspherical, exponential, Gaussian, rational quadratic, K-Bessel and tetraspherical. The best fit models were selected by cross-validation and Error Comparison Index (ECI). Each data set (month) had a particular spatial dependence structure, which made it necessary to define specific models of semivariogram in order to enhance the adjustment of the experimental semivariogram. Besides, the monthly trend map was plotted to justify the chosen models.Sociedade Brasileira de Meteorologia2020-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862020000200187Revista Brasileira de Meteorologia v.35 n.2 2020reponame:Revista Brasileira de Meteorologia (Online)instname:Sociedade Brasileira de Meteorologia (SBMET)instacron:SBMET10.1590/0102-7786351013info:eu-repo/semantics/openAccessXavier Júnior,Sílvio Fernando AlvesJale,Jader da SilvaStosic,TatijanaSantos,Carlos Antonio Costa dosSingh,Vijay P.eng2020-08-10T00:00:00Zoai:scielo:S0102-77862020000200187Revistahttp://www.rbmet.org.br/port/index.phpONGhttps://old.scielo.br/oai/scielo-oai.php||rbmet@rbmet.org.br1982-43510102-7786opendoar:2020-08-10T00:00Revista Brasileira de Meteorologia (Online) - Sociedade Brasileira de Meteorologia (SBMET)false |
dc.title.none.fl_str_mv |
Precipitation trends analysis by Mann-Kendall test: a case study of Paraíba, Brazil |
title |
Precipitation trends analysis by Mann-Kendall test: a case study of Paraíba, Brazil |
spellingShingle |
Precipitation trends analysis by Mann-Kendall test: a case study of Paraíba, Brazil Xavier Júnior,Sílvio Fernando Alves precipitation trends Paraíba geostatistics |
title_short |
Precipitation trends analysis by Mann-Kendall test: a case study of Paraíba, Brazil |
title_full |
Precipitation trends analysis by Mann-Kendall test: a case study of Paraíba, Brazil |
title_fullStr |
Precipitation trends analysis by Mann-Kendall test: a case study of Paraíba, Brazil |
title_full_unstemmed |
Precipitation trends analysis by Mann-Kendall test: a case study of Paraíba, Brazil |
title_sort |
Precipitation trends analysis by Mann-Kendall test: a case study of Paraíba, Brazil |
author |
Xavier Júnior,Sílvio Fernando Alves |
author_facet |
Xavier Júnior,Sílvio Fernando Alves Jale,Jader da Silva Stosic,Tatijana Santos,Carlos Antonio Costa dos Singh,Vijay P. |
author_role |
author |
author2 |
Jale,Jader da Silva Stosic,Tatijana Santos,Carlos Antonio Costa dos Singh,Vijay P. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Xavier Júnior,Sílvio Fernando Alves Jale,Jader da Silva Stosic,Tatijana Santos,Carlos Antonio Costa dos Singh,Vijay P. |
dc.subject.por.fl_str_mv |
precipitation trends Paraíba geostatistics |
topic |
precipitation trends Paraíba geostatistics |
description |
Abstract This work aimed to select semivariogram models to estimate trends in monthly precipitation in Paraiba State-Brazil using ordinary kriging. The methodology involves the application of geostatistical interpolation of precipitation records of 51 years from 69 rainfall stations across the state. Analysis of semivariograms showed that specific months had a strong spatial dependence (Index of Spatial Dependence - IDE < 25%). The trends were subjected to the following models: circular, spherical, pentaspherical, exponential, Gaussian, rational quadratic, K-Bessel and tetraspherical. The best fit models were selected by cross-validation and Error Comparison Index (ECI). Each data set (month) had a particular spatial dependence structure, which made it necessary to define specific models of semivariogram in order to enhance the adjustment of the experimental semivariogram. Besides, the monthly trend map was plotted to justify the chosen models. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862020000200187 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862020000200187 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0102-7786351013 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Meteorologia |
publisher.none.fl_str_mv |
Sociedade Brasileira de Meteorologia |
dc.source.none.fl_str_mv |
Revista Brasileira de Meteorologia v.35 n.2 2020 reponame:Revista Brasileira de Meteorologia (Online) instname:Sociedade Brasileira de Meteorologia (SBMET) instacron:SBMET |
instname_str |
Sociedade Brasileira de Meteorologia (SBMET) |
instacron_str |
SBMET |
institution |
SBMET |
reponame_str |
Revista Brasileira de Meteorologia (Online) |
collection |
Revista Brasileira de Meteorologia (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Meteorologia (Online) - Sociedade Brasileira de Meteorologia (SBMET) |
repository.mail.fl_str_mv |
||rbmet@rbmet.org.br |
_version_ |
1752122086265978880 |