Preenchimento de Falhas em Séries Temporais de Precipitação Diária no Rio Grande do Sul

Detalhes bibliográficos
Autor(a) principal: Brubacher,João Paulo
Data de Publicação: 2020
Outros Autores: Oliveira,Guilherme Garcia de, Guasselli,Laurindo Antonio
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista Brasileira de Meteorologia (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862020000200335
Resumo: Resumo O preenchimento de falhas em séries temporais de precipitação é um importante processo para aplicações em hidrologia, visando o aproveitamento de longas séries, evitando que as mesmas sejam descartadas. Desse modo, este estudo teve como objetivo realizar o preenchimento de falhas em séries históricas de precipitação diária no Rio Grande do Sul (RS), auxiliando no aproveitamento desses dados em estudos que necessitem de analises de longo prazo. Para tanto, foram utilizadas séries históricas de 287 estações, no período entre 1987 e 2016 e aplicados os métodos de Regressão Linear Múltipla (RLM) e Redes Neurais Artificiais (RNA), comparando e avaliando os valores preenchidos. Um algoritmo foi desenvolvido para realizar as seguintes operações: i) identificar os dias com falhas em cada estação; ii) identificar as estações que podem ser utilizadas para o preenchimento de cada falha; iii) identificar todas as combinações de entrada para o preenchimento de falhas em cada estação; iv) realizar o ajuste/treinamento dos modelos RLM e RNA; v) realizar a validação dos modelos com base no período sem falhas de cada estação. Os principais resultados indicam que a maior densidade de estações pluviométricas favorece o processo de preenchimento de falhas em séries históricas de precipitação, melhorando a qualidade da série preenchida. O preenchimento de falhas apresentou maior coeficiente de determinação e menor erro médio absoluto usando o modelo RLM em relação às RNA, possivelmente em função da forte correlação linear entre os dados de precipitação de cada local em relação a sua vizinhança. O modelo de RLM apresentou um coeficiente de determinação (R2) médio de 0,697, enquanto que o modelo RNA obteve media de 0,675. Levando-se em conta a análise por meio do erro médio absoluto (EMA), a média dos valores foi de 2,27 mm para a RLM, enquanto para a RNA o erro ficou em 2,31 mm. Conclui-se, considerando o conjunto de dados de precipitação diária do RS, que houve uma pequena superioridade do método RLM em relação à RNA.
id SBMET-1_2243ac2976fc620648f52016d6356d96
oai_identifier_str oai:scielo:S0102-77862020000200335
network_acronym_str SBMET-1
network_name_str Revista Brasileira de Meteorologia (Online)
repository_id_str
spelling Preenchimento de Falhas em Séries Temporais de Precipitação Diária no Rio Grande do Sulregressão linear múltiplaredes neurais artificiaisestações pluviométricasResumo O preenchimento de falhas em séries temporais de precipitação é um importante processo para aplicações em hidrologia, visando o aproveitamento de longas séries, evitando que as mesmas sejam descartadas. Desse modo, este estudo teve como objetivo realizar o preenchimento de falhas em séries históricas de precipitação diária no Rio Grande do Sul (RS), auxiliando no aproveitamento desses dados em estudos que necessitem de analises de longo prazo. Para tanto, foram utilizadas séries históricas de 287 estações, no período entre 1987 e 2016 e aplicados os métodos de Regressão Linear Múltipla (RLM) e Redes Neurais Artificiais (RNA), comparando e avaliando os valores preenchidos. Um algoritmo foi desenvolvido para realizar as seguintes operações: i) identificar os dias com falhas em cada estação; ii) identificar as estações que podem ser utilizadas para o preenchimento de cada falha; iii) identificar todas as combinações de entrada para o preenchimento de falhas em cada estação; iv) realizar o ajuste/treinamento dos modelos RLM e RNA; v) realizar a validação dos modelos com base no período sem falhas de cada estação. Os principais resultados indicam que a maior densidade de estações pluviométricas favorece o processo de preenchimento de falhas em séries históricas de precipitação, melhorando a qualidade da série preenchida. O preenchimento de falhas apresentou maior coeficiente de determinação e menor erro médio absoluto usando o modelo RLM em relação às RNA, possivelmente em função da forte correlação linear entre os dados de precipitação de cada local em relação a sua vizinhança. O modelo de RLM apresentou um coeficiente de determinação (R2) médio de 0,697, enquanto que o modelo RNA obteve media de 0,675. Levando-se em conta a análise por meio do erro médio absoluto (EMA), a média dos valores foi de 2,27 mm para a RLM, enquanto para a RNA o erro ficou em 2,31 mm. Conclui-se, considerando o conjunto de dados de precipitação diária do RS, que houve uma pequena superioridade do método RLM em relação à RNA.Sociedade Brasileira de Meteorologia2020-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862020000200335Revista Brasileira de Meteorologia v.35 n.2 2020reponame:Revista Brasileira de Meteorologia (Online)instname:Sociedade Brasileira de Meteorologia (SBMET)instacron:SBMET10.1590/0102-7786352035info:eu-repo/semantics/openAccessBrubacher,João PauloOliveira,Guilherme Garcia deGuasselli,Laurindo Antoniopor2020-08-10T00:00:00Zoai:scielo:S0102-77862020000200335Revistahttp://www.rbmet.org.br/port/index.phpONGhttps://old.scielo.br/oai/scielo-oai.php||rbmet@rbmet.org.br1982-43510102-7786opendoar:2020-08-10T00:00Revista Brasileira de Meteorologia (Online) - Sociedade Brasileira de Meteorologia (SBMET)false
dc.title.none.fl_str_mv Preenchimento de Falhas em Séries Temporais de Precipitação Diária no Rio Grande do Sul
title Preenchimento de Falhas em Séries Temporais de Precipitação Diária no Rio Grande do Sul
spellingShingle Preenchimento de Falhas em Séries Temporais de Precipitação Diária no Rio Grande do Sul
Brubacher,João Paulo
regressão linear múltipla
redes neurais artificiais
estações pluviométricas
title_short Preenchimento de Falhas em Séries Temporais de Precipitação Diária no Rio Grande do Sul
title_full Preenchimento de Falhas em Séries Temporais de Precipitação Diária no Rio Grande do Sul
title_fullStr Preenchimento de Falhas em Séries Temporais de Precipitação Diária no Rio Grande do Sul
title_full_unstemmed Preenchimento de Falhas em Séries Temporais de Precipitação Diária no Rio Grande do Sul
title_sort Preenchimento de Falhas em Séries Temporais de Precipitação Diária no Rio Grande do Sul
author Brubacher,João Paulo
author_facet Brubacher,João Paulo
Oliveira,Guilherme Garcia de
Guasselli,Laurindo Antonio
author_role author
author2 Oliveira,Guilherme Garcia de
Guasselli,Laurindo Antonio
author2_role author
author
dc.contributor.author.fl_str_mv Brubacher,João Paulo
Oliveira,Guilherme Garcia de
Guasselli,Laurindo Antonio
dc.subject.por.fl_str_mv regressão linear múltipla
redes neurais artificiais
estações pluviométricas
topic regressão linear múltipla
redes neurais artificiais
estações pluviométricas
description Resumo O preenchimento de falhas em séries temporais de precipitação é um importante processo para aplicações em hidrologia, visando o aproveitamento de longas séries, evitando que as mesmas sejam descartadas. Desse modo, este estudo teve como objetivo realizar o preenchimento de falhas em séries históricas de precipitação diária no Rio Grande do Sul (RS), auxiliando no aproveitamento desses dados em estudos que necessitem de analises de longo prazo. Para tanto, foram utilizadas séries históricas de 287 estações, no período entre 1987 e 2016 e aplicados os métodos de Regressão Linear Múltipla (RLM) e Redes Neurais Artificiais (RNA), comparando e avaliando os valores preenchidos. Um algoritmo foi desenvolvido para realizar as seguintes operações: i) identificar os dias com falhas em cada estação; ii) identificar as estações que podem ser utilizadas para o preenchimento de cada falha; iii) identificar todas as combinações de entrada para o preenchimento de falhas em cada estação; iv) realizar o ajuste/treinamento dos modelos RLM e RNA; v) realizar a validação dos modelos com base no período sem falhas de cada estação. Os principais resultados indicam que a maior densidade de estações pluviométricas favorece o processo de preenchimento de falhas em séries históricas de precipitação, melhorando a qualidade da série preenchida. O preenchimento de falhas apresentou maior coeficiente de determinação e menor erro médio absoluto usando o modelo RLM em relação às RNA, possivelmente em função da forte correlação linear entre os dados de precipitação de cada local em relação a sua vizinhança. O modelo de RLM apresentou um coeficiente de determinação (R2) médio de 0,697, enquanto que o modelo RNA obteve media de 0,675. Levando-se em conta a análise por meio do erro médio absoluto (EMA), a média dos valores foi de 2,27 mm para a RLM, enquanto para a RNA o erro ficou em 2,31 mm. Conclui-se, considerando o conjunto de dados de precipitação diária do RS, que houve uma pequena superioridade do método RLM em relação à RNA.
publishDate 2020
dc.date.none.fl_str_mv 2020-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862020000200335
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862020000200335
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv 10.1590/0102-7786352035
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Meteorologia
publisher.none.fl_str_mv Sociedade Brasileira de Meteorologia
dc.source.none.fl_str_mv Revista Brasileira de Meteorologia v.35 n.2 2020
reponame:Revista Brasileira de Meteorologia (Online)
instname:Sociedade Brasileira de Meteorologia (SBMET)
instacron:SBMET
instname_str Sociedade Brasileira de Meteorologia (SBMET)
instacron_str SBMET
institution SBMET
reponame_str Revista Brasileira de Meteorologia (Online)
collection Revista Brasileira de Meteorologia (Online)
repository.name.fl_str_mv Revista Brasileira de Meteorologia (Online) - Sociedade Brasileira de Meteorologia (SBMET)
repository.mail.fl_str_mv ||rbmet@rbmet.org.br
_version_ 1752122086688555008