Modelagem da maré meteorológica utilizando redes neurais artificiais: uma aplicação para a Baía de Paranaguá-PR, parte 2: dados meteorológicos de reanálise do NCEP/NCAR
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista Brasileira de Meteorologia (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862007000100006 |
Resumo: | A variabilidade do nível do mar observado e a maré meteorológica na Baía de Paranaguá-PR foram analisadas, neste trabalho, com os dados maregráficos utilizados na Parte 1 e os dados meteorológicos de reanálise do "National Centers for Environmental Prediction" (NCEP) e do "National Center Atmospheric Research" (NCAR) pontos de grade no oceano, próximos ao local de estudo, referentes ao mesmo período. As componentes de alta freqüência contidas nos dados de reanálise foram retiradas com o filtro passa-baixa de Thompson, descrito na Parte 1, adaptado para intervalos de 6 horas. Analisou-se as influências das variáveis meteorológicas mais remotas, nas sobre-elevações e abaixamentos do nível do mar observado, utilizando dados de reanálise de pressão e vento. Conforme descrito na Parte 1, as séries foram analisadas, estatisticamente, no domínio do tempo e da freqüência. A série maregráfica filtrada de Cananéia (SP), utilizada para verificar a existência de correlação com a série de Paranaguá, confirmou os estudos de Mesquita (1997) para o litoral Sudeste. Essa correlação foi verificada devido à proximidade da estação de Cananéia ao ponto de grade relativo à pressão. A Rede Neural Artificial (RNA) desenvolvida na Parte 1 foi, então, utilizada com os dados de reanálise, mantendo-se a mesma arquitetura de rede com as máximas correlações entre as variáveis de entrada e saída, ajustando-se os parâmetros de taxa de aprendizado e momento para alcançar o melhor desempenho. Os resultados obtidos com ambas as fontes de dados foram comparados e a eficiência da rede foi semelhante à Parte 1 para as simulações de 6h e 12 h. Para as simulações de 18h e 24h, os resultados foram inferiores como os encontrados para a estação de superfície, sugerindo também, o desenvolvimento de outras arquiteturas de rede, visando melhorar as previsões para períodos maiores. Os resultados obtidos com os dados de reanálise sugerem a sua utilização na falta de estações meteorológicas convencionais próximas a estações maregráficas. |
id |
SBMET-1_c99722915f2c0049f57acde5488dd8d6 |
---|---|
oai_identifier_str |
oai:scielo:S0102-77862007000100006 |
network_acronym_str |
SBMET-1 |
network_name_str |
Revista Brasileira de Meteorologia (Online) |
repository_id_str |
|
spelling |
Modelagem da maré meteorológica utilizando redes neurais artificiais: uma aplicação para a Baía de Paranaguá-PR, parte 2: dados meteorológicos de reanálise do NCEP/NCARRedes Neurais Artificiaisvariabilidade do nível do marmaré meteorológicaprevisão de séries temporaisdados de reanáliseA variabilidade do nível do mar observado e a maré meteorológica na Baía de Paranaguá-PR foram analisadas, neste trabalho, com os dados maregráficos utilizados na Parte 1 e os dados meteorológicos de reanálise do "National Centers for Environmental Prediction" (NCEP) e do "National Center Atmospheric Research" (NCAR) pontos de grade no oceano, próximos ao local de estudo, referentes ao mesmo período. As componentes de alta freqüência contidas nos dados de reanálise foram retiradas com o filtro passa-baixa de Thompson, descrito na Parte 1, adaptado para intervalos de 6 horas. Analisou-se as influências das variáveis meteorológicas mais remotas, nas sobre-elevações e abaixamentos do nível do mar observado, utilizando dados de reanálise de pressão e vento. Conforme descrito na Parte 1, as séries foram analisadas, estatisticamente, no domínio do tempo e da freqüência. A série maregráfica filtrada de Cananéia (SP), utilizada para verificar a existência de correlação com a série de Paranaguá, confirmou os estudos de Mesquita (1997) para o litoral Sudeste. Essa correlação foi verificada devido à proximidade da estação de Cananéia ao ponto de grade relativo à pressão. A Rede Neural Artificial (RNA) desenvolvida na Parte 1 foi, então, utilizada com os dados de reanálise, mantendo-se a mesma arquitetura de rede com as máximas correlações entre as variáveis de entrada e saída, ajustando-se os parâmetros de taxa de aprendizado e momento para alcançar o melhor desempenho. Os resultados obtidos com ambas as fontes de dados foram comparados e a eficiência da rede foi semelhante à Parte 1 para as simulações de 6h e 12 h. Para as simulações de 18h e 24h, os resultados foram inferiores como os encontrados para a estação de superfície, sugerindo também, o desenvolvimento de outras arquiteturas de rede, visando melhorar as previsões para períodos maiores. Os resultados obtidos com os dados de reanálise sugerem a sua utilização na falta de estações meteorológicas convencionais próximas a estações maregráficas.Sociedade Brasileira de Meteorologia2007-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862007000100006Revista Brasileira de Meteorologia v.22 n.1 2007reponame:Revista Brasileira de Meteorologia (Online)instname:Sociedade Brasileira de Meteorologia (SBMET)instacron:SBMET10.1590/S0102-77862007000100006info:eu-repo/semantics/openAccessOliveira,Marilia Mitidieri F. deEbecken,Nelson Francisco F.Santos,Isimar de A.Neves,Claudio F.Caloba,Luiz P.Oliveira,Jorge Luiz F. depor2007-11-22T00:00:00Zoai:scielo:S0102-77862007000100006Revistahttp://www.rbmet.org.br/port/index.phpONGhttps://old.scielo.br/oai/scielo-oai.php||rbmet@rbmet.org.br1982-43510102-7786opendoar:2007-11-22T00:00Revista Brasileira de Meteorologia (Online) - Sociedade Brasileira de Meteorologia (SBMET)false |
dc.title.none.fl_str_mv |
Modelagem da maré meteorológica utilizando redes neurais artificiais: uma aplicação para a Baía de Paranaguá-PR, parte 2: dados meteorológicos de reanálise do NCEP/NCAR |
title |
Modelagem da maré meteorológica utilizando redes neurais artificiais: uma aplicação para a Baía de Paranaguá-PR, parte 2: dados meteorológicos de reanálise do NCEP/NCAR |
spellingShingle |
Modelagem da maré meteorológica utilizando redes neurais artificiais: uma aplicação para a Baía de Paranaguá-PR, parte 2: dados meteorológicos de reanálise do NCEP/NCAR Oliveira,Marilia Mitidieri F. de Redes Neurais Artificiais variabilidade do nível do mar maré meteorológica previsão de séries temporais dados de reanálise |
title_short |
Modelagem da maré meteorológica utilizando redes neurais artificiais: uma aplicação para a Baía de Paranaguá-PR, parte 2: dados meteorológicos de reanálise do NCEP/NCAR |
title_full |
Modelagem da maré meteorológica utilizando redes neurais artificiais: uma aplicação para a Baía de Paranaguá-PR, parte 2: dados meteorológicos de reanálise do NCEP/NCAR |
title_fullStr |
Modelagem da maré meteorológica utilizando redes neurais artificiais: uma aplicação para a Baía de Paranaguá-PR, parte 2: dados meteorológicos de reanálise do NCEP/NCAR |
title_full_unstemmed |
Modelagem da maré meteorológica utilizando redes neurais artificiais: uma aplicação para a Baía de Paranaguá-PR, parte 2: dados meteorológicos de reanálise do NCEP/NCAR |
title_sort |
Modelagem da maré meteorológica utilizando redes neurais artificiais: uma aplicação para a Baía de Paranaguá-PR, parte 2: dados meteorológicos de reanálise do NCEP/NCAR |
author |
Oliveira,Marilia Mitidieri F. de |
author_facet |
Oliveira,Marilia Mitidieri F. de Ebecken,Nelson Francisco F. Santos,Isimar de A. Neves,Claudio F. Caloba,Luiz P. Oliveira,Jorge Luiz F. de |
author_role |
author |
author2 |
Ebecken,Nelson Francisco F. Santos,Isimar de A. Neves,Claudio F. Caloba,Luiz P. Oliveira,Jorge Luiz F. de |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Oliveira,Marilia Mitidieri F. de Ebecken,Nelson Francisco F. Santos,Isimar de A. Neves,Claudio F. Caloba,Luiz P. Oliveira,Jorge Luiz F. de |
dc.subject.por.fl_str_mv |
Redes Neurais Artificiais variabilidade do nível do mar maré meteorológica previsão de séries temporais dados de reanálise |
topic |
Redes Neurais Artificiais variabilidade do nível do mar maré meteorológica previsão de séries temporais dados de reanálise |
description |
A variabilidade do nível do mar observado e a maré meteorológica na Baía de Paranaguá-PR foram analisadas, neste trabalho, com os dados maregráficos utilizados na Parte 1 e os dados meteorológicos de reanálise do "National Centers for Environmental Prediction" (NCEP) e do "National Center Atmospheric Research" (NCAR) pontos de grade no oceano, próximos ao local de estudo, referentes ao mesmo período. As componentes de alta freqüência contidas nos dados de reanálise foram retiradas com o filtro passa-baixa de Thompson, descrito na Parte 1, adaptado para intervalos de 6 horas. Analisou-se as influências das variáveis meteorológicas mais remotas, nas sobre-elevações e abaixamentos do nível do mar observado, utilizando dados de reanálise de pressão e vento. Conforme descrito na Parte 1, as séries foram analisadas, estatisticamente, no domínio do tempo e da freqüência. A série maregráfica filtrada de Cananéia (SP), utilizada para verificar a existência de correlação com a série de Paranaguá, confirmou os estudos de Mesquita (1997) para o litoral Sudeste. Essa correlação foi verificada devido à proximidade da estação de Cananéia ao ponto de grade relativo à pressão. A Rede Neural Artificial (RNA) desenvolvida na Parte 1 foi, então, utilizada com os dados de reanálise, mantendo-se a mesma arquitetura de rede com as máximas correlações entre as variáveis de entrada e saída, ajustando-se os parâmetros de taxa de aprendizado e momento para alcançar o melhor desempenho. Os resultados obtidos com ambas as fontes de dados foram comparados e a eficiência da rede foi semelhante à Parte 1 para as simulações de 6h e 12 h. Para as simulações de 18h e 24h, os resultados foram inferiores como os encontrados para a estação de superfície, sugerindo também, o desenvolvimento de outras arquiteturas de rede, visando melhorar as previsões para períodos maiores. Os resultados obtidos com os dados de reanálise sugerem a sua utilização na falta de estações meteorológicas convencionais próximas a estações maregráficas. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862007000100006 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862007000100006 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
10.1590/S0102-77862007000100006 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Meteorologia |
publisher.none.fl_str_mv |
Sociedade Brasileira de Meteorologia |
dc.source.none.fl_str_mv |
Revista Brasileira de Meteorologia v.22 n.1 2007 reponame:Revista Brasileira de Meteorologia (Online) instname:Sociedade Brasileira de Meteorologia (SBMET) instacron:SBMET |
instname_str |
Sociedade Brasileira de Meteorologia (SBMET) |
instacron_str |
SBMET |
institution |
SBMET |
reponame_str |
Revista Brasileira de Meteorologia (Online) |
collection |
Revista Brasileira de Meteorologia (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Meteorologia (Online) - Sociedade Brasileira de Meteorologia (SBMET) |
repository.mail.fl_str_mv |
||rbmet@rbmet.org.br |
_version_ |
1752122083441115136 |