Characterization of Otto Chips by Particle Swarm Optimization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of Microwaves. Optoelectronics and Electromagnetic Applications |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742021000100158 |
Resumo: | Abstract Recently a surface plasmon resonance (SPR) optical sensor, based on the Otto configuration — the Otto chip — has been developed. One essential step in the quality control of the fabrication process is characterization of the active region of several devices in a batch. Characterization is done by measuring the angular spectrum of the optical re ectance on several points across the active region of the device, and determining parameters by regression analysis of the data. Traditional gradient methods used in the regression process are extremely dependent on an initial guess and are not very efficient for batch analysis of curves, when those include poorly defined SPR spectra, where an initial guess may be hard to infer. An alternative approach for the regression problem is to model the analysis as an optimization problem and using an efficient stochastic algorithm. In this paper one discusses the use of Particle Swarm Optimization (PSO) for characterization of Otto chip devices. From comparative studies carried out in an existing Otto chip, it is observed that PSO can be a very efficient approach for batch analysis and yields better results when compared with the traditional gradient-based regression method. |
id |
SBMO-1_021dfe0a01ce80a619ada9b397cce325 |
---|---|
oai_identifier_str |
oai:scielo:S2179-10742021000100158 |
network_acronym_str |
SBMO-1 |
network_name_str |
Journal of Microwaves. Optoelectronics and Electromagnetic Applications |
repository_id_str |
|
spelling |
Characterization of Otto Chips by Particle Swarm Optimizationparticle swarm optimizationsurface plasmon resonanceSPROtto chipPSOregression analysisAbstract Recently a surface plasmon resonance (SPR) optical sensor, based on the Otto configuration — the Otto chip — has been developed. One essential step in the quality control of the fabrication process is characterization of the active region of several devices in a batch. Characterization is done by measuring the angular spectrum of the optical re ectance on several points across the active region of the device, and determining parameters by regression analysis of the data. Traditional gradient methods used in the regression process are extremely dependent on an initial guess and are not very efficient for batch analysis of curves, when those include poorly defined SPR spectra, where an initial guess may be hard to infer. An alternative approach for the regression problem is to model the analysis as an optimization problem and using an efficient stochastic algorithm. In this paper one discusses the use of Particle Swarm Optimization (PSO) for characterization of Otto chip devices. From comparative studies carried out in an existing Otto chip, it is observed that PSO can be a very efficient approach for batch analysis and yields better results when compared with the traditional gradient-based regression method.Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo2021-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742021000100158Journal of Microwaves, Optoelectronics and Electromagnetic Applications v.20 n.1 2021reponame:Journal of Microwaves. Optoelectronics and Electromagnetic Applicationsinstname:Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)instacron:SBMO10.1590/2179-10742021v20i11092info:eu-repo/semantics/openAccessSilva,Adonias Luna Pereira daOliveira,Sérgio CampelloCavalcanti,Gustavo OliveiraAlmeida Neto,Manoel Alves deSantos,Maria Renata Nascimento dosLlamas-Garro,IgnacioKim,Jung-MuFernandes,Gabriel de FreitasFontana,Eduardoeng2021-03-01T00:00:00Zoai:scielo:S2179-10742021000100158Revistahttp://www.jmoe.org/index.php/jmoe/indexONGhttps://old.scielo.br/oai/scielo-oai.php||editor_jmoe@sbmo.org.br2179-10742179-1074opendoar:2021-03-01T00:00Journal of Microwaves. Optoelectronics and Electromagnetic Applications - Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)false |
dc.title.none.fl_str_mv |
Characterization of Otto Chips by Particle Swarm Optimization |
title |
Characterization of Otto Chips by Particle Swarm Optimization |
spellingShingle |
Characterization of Otto Chips by Particle Swarm Optimization Silva,Adonias Luna Pereira da particle swarm optimization surface plasmon resonance SPR Otto chip PSO regression analysis |
title_short |
Characterization of Otto Chips by Particle Swarm Optimization |
title_full |
Characterization of Otto Chips by Particle Swarm Optimization |
title_fullStr |
Characterization of Otto Chips by Particle Swarm Optimization |
title_full_unstemmed |
Characterization of Otto Chips by Particle Swarm Optimization |
title_sort |
Characterization of Otto Chips by Particle Swarm Optimization |
author |
Silva,Adonias Luna Pereira da |
author_facet |
Silva,Adonias Luna Pereira da Oliveira,Sérgio Campello Cavalcanti,Gustavo Oliveira Almeida Neto,Manoel Alves de Santos,Maria Renata Nascimento dos Llamas-Garro,Ignacio Kim,Jung-Mu Fernandes,Gabriel de Freitas Fontana,Eduardo |
author_role |
author |
author2 |
Oliveira,Sérgio Campello Cavalcanti,Gustavo Oliveira Almeida Neto,Manoel Alves de Santos,Maria Renata Nascimento dos Llamas-Garro,Ignacio Kim,Jung-Mu Fernandes,Gabriel de Freitas Fontana,Eduardo |
author2_role |
author author author author author author author author |
dc.contributor.author.fl_str_mv |
Silva,Adonias Luna Pereira da Oliveira,Sérgio Campello Cavalcanti,Gustavo Oliveira Almeida Neto,Manoel Alves de Santos,Maria Renata Nascimento dos Llamas-Garro,Ignacio Kim,Jung-Mu Fernandes,Gabriel de Freitas Fontana,Eduardo |
dc.subject.por.fl_str_mv |
particle swarm optimization surface plasmon resonance SPR Otto chip PSO regression analysis |
topic |
particle swarm optimization surface plasmon resonance SPR Otto chip PSO regression analysis |
description |
Abstract Recently a surface plasmon resonance (SPR) optical sensor, based on the Otto configuration — the Otto chip — has been developed. One essential step in the quality control of the fabrication process is characterization of the active region of several devices in a batch. Characterization is done by measuring the angular spectrum of the optical re ectance on several points across the active region of the device, and determining parameters by regression analysis of the data. Traditional gradient methods used in the regression process are extremely dependent on an initial guess and are not very efficient for batch analysis of curves, when those include poorly defined SPR spectra, where an initial guess may be hard to infer. An alternative approach for the regression problem is to model the analysis as an optimization problem and using an efficient stochastic algorithm. In this paper one discusses the use of Particle Swarm Optimization (PSO) for characterization of Otto chip devices. From comparative studies carried out in an existing Otto chip, it is observed that PSO can be a very efficient approach for batch analysis and yields better results when compared with the traditional gradient-based regression method. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742021000100158 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742021000100158 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/2179-10742021v20i11092 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo |
publisher.none.fl_str_mv |
Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo |
dc.source.none.fl_str_mv |
Journal of Microwaves, Optoelectronics and Electromagnetic Applications v.20 n.1 2021 reponame:Journal of Microwaves. Optoelectronics and Electromagnetic Applications instname:Sociedade Brasileira de Microondas e Optoeletrônica (SBMO) instacron:SBMO |
instname_str |
Sociedade Brasileira de Microondas e Optoeletrônica (SBMO) |
instacron_str |
SBMO |
institution |
SBMO |
reponame_str |
Journal of Microwaves. Optoelectronics and Electromagnetic Applications |
collection |
Journal of Microwaves. Optoelectronics and Electromagnetic Applications |
repository.name.fl_str_mv |
Journal of Microwaves. Optoelectronics and Electromagnetic Applications - Sociedade Brasileira de Microondas e Optoeletrônica (SBMO) |
repository.mail.fl_str_mv |
||editor_jmoe@sbmo.org.br |
_version_ |
1752122126989524992 |