Characterization of Otto Chips by Particle Swarm Optimization

Detalhes bibliográficos
Autor(a) principal: Silva,Adonias Luna Pereira da
Data de Publicação: 2021
Outros Autores: Oliveira,Sérgio Campello, Cavalcanti,Gustavo Oliveira, Almeida Neto,Manoel Alves de, Santos,Maria Renata Nascimento dos, Llamas-Garro,Ignacio, Kim,Jung-Mu, Fernandes,Gabriel de Freitas, Fontana,Eduardo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of Microwaves. Optoelectronics and Electromagnetic Applications
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742021000100158
Resumo: Abstract Recently a surface plasmon resonance (SPR) optical sensor, based on the Otto configuration — the Otto chip — has been developed. One essential step in the quality control of the fabrication process is characterization of the active region of several devices in a batch. Characterization is done by measuring the angular spectrum of the optical re ectance on several points across the active region of the device, and determining parameters by regression analysis of the data. Traditional gradient methods used in the regression process are extremely dependent on an initial guess and are not very efficient for batch analysis of curves, when those include poorly defined SPR spectra, where an initial guess may be hard to infer. An alternative approach for the regression problem is to model the analysis as an optimization problem and using an efficient stochastic algorithm. In this paper one discusses the use of Particle Swarm Optimization (PSO) for characterization of Otto chip devices. From comparative studies carried out in an existing Otto chip, it is observed that PSO can be a very efficient approach for batch analysis and yields better results when compared with the traditional gradient-based regression method.
id SBMO-1_021dfe0a01ce80a619ada9b397cce325
oai_identifier_str oai:scielo:S2179-10742021000100158
network_acronym_str SBMO-1
network_name_str Journal of Microwaves. Optoelectronics and Electromagnetic Applications
repository_id_str
spelling Characterization of Otto Chips by Particle Swarm Optimizationparticle swarm optimizationsurface plasmon resonanceSPROtto chipPSOregression analysisAbstract Recently a surface plasmon resonance (SPR) optical sensor, based on the Otto configuration — the Otto chip — has been developed. One essential step in the quality control of the fabrication process is characterization of the active region of several devices in a batch. Characterization is done by measuring the angular spectrum of the optical re ectance on several points across the active region of the device, and determining parameters by regression analysis of the data. Traditional gradient methods used in the regression process are extremely dependent on an initial guess and are not very efficient for batch analysis of curves, when those include poorly defined SPR spectra, where an initial guess may be hard to infer. An alternative approach for the regression problem is to model the analysis as an optimization problem and using an efficient stochastic algorithm. In this paper one discusses the use of Particle Swarm Optimization (PSO) for characterization of Otto chip devices. From comparative studies carried out in an existing Otto chip, it is observed that PSO can be a very efficient approach for batch analysis and yields better results when compared with the traditional gradient-based regression method.Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo2021-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742021000100158Journal of Microwaves, Optoelectronics and Electromagnetic Applications v.20 n.1 2021reponame:Journal of Microwaves. Optoelectronics and Electromagnetic Applicationsinstname:Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)instacron:SBMO10.1590/2179-10742021v20i11092info:eu-repo/semantics/openAccessSilva,Adonias Luna Pereira daOliveira,Sérgio CampelloCavalcanti,Gustavo OliveiraAlmeida Neto,Manoel Alves deSantos,Maria Renata Nascimento dosLlamas-Garro,IgnacioKim,Jung-MuFernandes,Gabriel de FreitasFontana,Eduardoeng2021-03-01T00:00:00Zoai:scielo:S2179-10742021000100158Revistahttp://www.jmoe.org/index.php/jmoe/indexONGhttps://old.scielo.br/oai/scielo-oai.php||editor_jmoe@sbmo.org.br2179-10742179-1074opendoar:2021-03-01T00:00Journal of Microwaves. Optoelectronics and Electromagnetic Applications - Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)false
dc.title.none.fl_str_mv Characterization of Otto Chips by Particle Swarm Optimization
title Characterization of Otto Chips by Particle Swarm Optimization
spellingShingle Characterization of Otto Chips by Particle Swarm Optimization
Silva,Adonias Luna Pereira da
particle swarm optimization
surface plasmon resonance
SPR
Otto chip
PSO
regression analysis
title_short Characterization of Otto Chips by Particle Swarm Optimization
title_full Characterization of Otto Chips by Particle Swarm Optimization
title_fullStr Characterization of Otto Chips by Particle Swarm Optimization
title_full_unstemmed Characterization of Otto Chips by Particle Swarm Optimization
title_sort Characterization of Otto Chips by Particle Swarm Optimization
author Silva,Adonias Luna Pereira da
author_facet Silva,Adonias Luna Pereira da
Oliveira,Sérgio Campello
Cavalcanti,Gustavo Oliveira
Almeida Neto,Manoel Alves de
Santos,Maria Renata Nascimento dos
Llamas-Garro,Ignacio
Kim,Jung-Mu
Fernandes,Gabriel de Freitas
Fontana,Eduardo
author_role author
author2 Oliveira,Sérgio Campello
Cavalcanti,Gustavo Oliveira
Almeida Neto,Manoel Alves de
Santos,Maria Renata Nascimento dos
Llamas-Garro,Ignacio
Kim,Jung-Mu
Fernandes,Gabriel de Freitas
Fontana,Eduardo
author2_role author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Silva,Adonias Luna Pereira da
Oliveira,Sérgio Campello
Cavalcanti,Gustavo Oliveira
Almeida Neto,Manoel Alves de
Santos,Maria Renata Nascimento dos
Llamas-Garro,Ignacio
Kim,Jung-Mu
Fernandes,Gabriel de Freitas
Fontana,Eduardo
dc.subject.por.fl_str_mv particle swarm optimization
surface plasmon resonance
SPR
Otto chip
PSO
regression analysis
topic particle swarm optimization
surface plasmon resonance
SPR
Otto chip
PSO
regression analysis
description Abstract Recently a surface plasmon resonance (SPR) optical sensor, based on the Otto configuration — the Otto chip — has been developed. One essential step in the quality control of the fabrication process is characterization of the active region of several devices in a batch. Characterization is done by measuring the angular spectrum of the optical re ectance on several points across the active region of the device, and determining parameters by regression analysis of the data. Traditional gradient methods used in the regression process are extremely dependent on an initial guess and are not very efficient for batch analysis of curves, when those include poorly defined SPR spectra, where an initial guess may be hard to infer. An alternative approach for the regression problem is to model the analysis as an optimization problem and using an efficient stochastic algorithm. In this paper one discusses the use of Particle Swarm Optimization (PSO) for characterization of Otto chip devices. From comparative studies carried out in an existing Otto chip, it is observed that PSO can be a very efficient approach for batch analysis and yields better results when compared with the traditional gradient-based regression method.
publishDate 2021
dc.date.none.fl_str_mv 2021-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742021000100158
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742021000100158
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/2179-10742021v20i11092
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo
publisher.none.fl_str_mv Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo
dc.source.none.fl_str_mv Journal of Microwaves, Optoelectronics and Electromagnetic Applications v.20 n.1 2021
reponame:Journal of Microwaves. Optoelectronics and Electromagnetic Applications
instname:Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)
instacron:SBMO
instname_str Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)
instacron_str SBMO
institution SBMO
reponame_str Journal of Microwaves. Optoelectronics and Electromagnetic Applications
collection Journal of Microwaves. Optoelectronics and Electromagnetic Applications
repository.name.fl_str_mv Journal of Microwaves. Optoelectronics and Electromagnetic Applications - Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)
repository.mail.fl_str_mv ||editor_jmoe@sbmo.org.br
_version_ 1752122126989524992