Transverse Load Discrimination in Long-Period Fiber Grating via Artificial Neural Network

Detalhes bibliográficos
Autor(a) principal: Barino,F. O.
Data de Publicação: 2020
Outros Autores: Delgado,F. S., Santos,A. Bessa dos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of Microwaves. Optoelectronics and Electromagnetic Applications
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742020000100001
Resumo: Abstract We present a general investigation of a Long-Period Grating (LPG) for transverse strain measurement. The transverse strain sensing characteristics, for instance, the load intensity and azimuthal angle, are analyzed with the data set generated by the LPG sensor and probed by artificial neural network (ANN). Furthermore, we evaluate and compare the predictive performance of the interrogation model considering the square correlation coefficient (R2), root mean square error (RMSE) and mean absolute percentage error (MAPE). The results indicate that the ANN model could be successfully employed to estimate the load intensity and azimuthal angle using a single LPG sensor.
id SBMO-1_042a48e7e92e6cd77817006284329df8
oai_identifier_str oai:scielo:S2179-10742020000100001
network_acronym_str SBMO-1
network_name_str Journal of Microwaves. Optoelectronics and Electromagnetic Applications
repository_id_str
spelling Transverse Load Discrimination in Long-Period Fiber Grating via Artificial Neural NetworkArtificial neural networklong period gratingoptical fiber sensortransverse loadAbstract We present a general investigation of a Long-Period Grating (LPG) for transverse strain measurement. The transverse strain sensing characteristics, for instance, the load intensity and azimuthal angle, are analyzed with the data set generated by the LPG sensor and probed by artificial neural network (ANN). Furthermore, we evaluate and compare the predictive performance of the interrogation model considering the square correlation coefficient (R2), root mean square error (RMSE) and mean absolute percentage error (MAPE). The results indicate that the ANN model could be successfully employed to estimate the load intensity and azimuthal angle using a single LPG sensor.Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo2020-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742020000100001Journal of Microwaves, Optoelectronics and Electromagnetic Applications v.19 n.1 2020reponame:Journal of Microwaves. Optoelectronics and Electromagnetic Applicationsinstname:Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)instacron:SBMO10.1590/2179-10742020v19i11809info:eu-repo/semantics/openAccessBarino,F. O.Delgado,F. S.Santos,A. Bessa doseng2021-03-24T00:00:00Zoai:scielo:S2179-10742020000100001Revistahttp://www.jmoe.org/index.php/jmoe/indexONGhttps://old.scielo.br/oai/scielo-oai.php||editor_jmoe@sbmo.org.br2179-10742179-1074opendoar:2021-03-24T00:00Journal of Microwaves. Optoelectronics and Electromagnetic Applications - Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)false
dc.title.none.fl_str_mv Transverse Load Discrimination in Long-Period Fiber Grating via Artificial Neural Network
title Transverse Load Discrimination in Long-Period Fiber Grating via Artificial Neural Network
spellingShingle Transverse Load Discrimination in Long-Period Fiber Grating via Artificial Neural Network
Barino,F. O.
Artificial neural network
long period grating
optical fiber sensor
transverse load
title_short Transverse Load Discrimination in Long-Period Fiber Grating via Artificial Neural Network
title_full Transverse Load Discrimination in Long-Period Fiber Grating via Artificial Neural Network
title_fullStr Transverse Load Discrimination in Long-Period Fiber Grating via Artificial Neural Network
title_full_unstemmed Transverse Load Discrimination in Long-Period Fiber Grating via Artificial Neural Network
title_sort Transverse Load Discrimination in Long-Period Fiber Grating via Artificial Neural Network
author Barino,F. O.
author_facet Barino,F. O.
Delgado,F. S.
Santos,A. Bessa dos
author_role author
author2 Delgado,F. S.
Santos,A. Bessa dos
author2_role author
author
dc.contributor.author.fl_str_mv Barino,F. O.
Delgado,F. S.
Santos,A. Bessa dos
dc.subject.por.fl_str_mv Artificial neural network
long period grating
optical fiber sensor
transverse load
topic Artificial neural network
long period grating
optical fiber sensor
transverse load
description Abstract We present a general investigation of a Long-Period Grating (LPG) for transverse strain measurement. The transverse strain sensing characteristics, for instance, the load intensity and azimuthal angle, are analyzed with the data set generated by the LPG sensor and probed by artificial neural network (ANN). Furthermore, we evaluate and compare the predictive performance of the interrogation model considering the square correlation coefficient (R2), root mean square error (RMSE) and mean absolute percentage error (MAPE). The results indicate that the ANN model could be successfully employed to estimate the load intensity and azimuthal angle using a single LPG sensor.
publishDate 2020
dc.date.none.fl_str_mv 2020-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742020000100001
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742020000100001
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/2179-10742020v19i11809
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo
publisher.none.fl_str_mv Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo
dc.source.none.fl_str_mv Journal of Microwaves, Optoelectronics and Electromagnetic Applications v.19 n.1 2020
reponame:Journal of Microwaves. Optoelectronics and Electromagnetic Applications
instname:Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)
instacron:SBMO
instname_str Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)
instacron_str SBMO
institution SBMO
reponame_str Journal of Microwaves. Optoelectronics and Electromagnetic Applications
collection Journal of Microwaves. Optoelectronics and Electromagnetic Applications
repository.name.fl_str_mv Journal of Microwaves. Optoelectronics and Electromagnetic Applications - Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)
repository.mail.fl_str_mv ||editor_jmoe@sbmo.org.br
_version_ 1752122126664466432