Design of coaxial aircell fixture for the measurement of electromagnetic properties
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of Microwaves. Optoelectronics and Electromagnetic Applications |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742017000300686 |
Resumo: | Abstract Coaxial aircells are designed and fabricated to measure the electromagnetic properties of ferrite materials in the frequency range from 1 MHz to 3.6 GHz. These S-parameters are actually measured connecting the aircell to a vector network analyzer (VNA). The electromagnetic properties such as complex permittivity and complex permeability are extracted using Nicolson-Ross-Weir (NRW) method and also suitable air-gap corrections are made. To optimize the measured result and to estimate the error, the aircells are characterized in terms of their phase constant and resistivity of the aircell conductor. The measurements clearly showed that the electrical length is longer than the mechanical length of the aircell at all frequencies. The arithmetic mean of the resistivity of aircell which is of 7mm line size and 60mm length is about 66 nΩm. This paper presents a simple method by which the phase constant and resistivity of the aircell can be determined accurately. This is done with the transmission measurements made using a VNA. |
id |
SBMO-1_19b543770740b8b5a36de991dffcf1a8 |
---|---|
oai_identifier_str |
oai:scielo:S2179-10742017000300686 |
network_acronym_str |
SBMO-1 |
network_name_str |
Journal of Microwaves. Optoelectronics and Electromagnetic Applications |
repository_id_str |
|
spelling |
Design of coaxial aircell fixture for the measurement of electromagnetic propertiesCoaxial aircellS-parametersComplex permittivityComplex permeabilityAbstract Coaxial aircells are designed and fabricated to measure the electromagnetic properties of ferrite materials in the frequency range from 1 MHz to 3.6 GHz. These S-parameters are actually measured connecting the aircell to a vector network analyzer (VNA). The electromagnetic properties such as complex permittivity and complex permeability are extracted using Nicolson-Ross-Weir (NRW) method and also suitable air-gap corrections are made. To optimize the measured result and to estimate the error, the aircells are characterized in terms of their phase constant and resistivity of the aircell conductor. The measurements clearly showed that the electrical length is longer than the mechanical length of the aircell at all frequencies. The arithmetic mean of the resistivity of aircell which is of 7mm line size and 60mm length is about 66 nΩm. This paper presents a simple method by which the phase constant and resistivity of the aircell can be determined accurately. This is done with the transmission measurements made using a VNA.Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo2017-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742017000300686Journal of Microwaves, Optoelectronics and Electromagnetic Applications v.16 n.3 2017reponame:Journal of Microwaves. Optoelectronics and Electromagnetic Applicationsinstname:Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)instacron:SBMO10.1590/2179-10742017v16i3908info:eu-repo/semantics/openAccessRaju,V. Seetha Ramaeng2017-10-06T00:00:00Zoai:scielo:S2179-10742017000300686Revistahttp://www.jmoe.org/index.php/jmoe/indexONGhttps://old.scielo.br/oai/scielo-oai.php||editor_jmoe@sbmo.org.br2179-10742179-1074opendoar:2017-10-06T00:00Journal of Microwaves. Optoelectronics and Electromagnetic Applications - Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)false |
dc.title.none.fl_str_mv |
Design of coaxial aircell fixture for the measurement of electromagnetic properties |
title |
Design of coaxial aircell fixture for the measurement of electromagnetic properties |
spellingShingle |
Design of coaxial aircell fixture for the measurement of electromagnetic properties Raju,V. Seetha Rama Coaxial aircell S-parameters Complex permittivity Complex permeability |
title_short |
Design of coaxial aircell fixture for the measurement of electromagnetic properties |
title_full |
Design of coaxial aircell fixture for the measurement of electromagnetic properties |
title_fullStr |
Design of coaxial aircell fixture for the measurement of electromagnetic properties |
title_full_unstemmed |
Design of coaxial aircell fixture for the measurement of electromagnetic properties |
title_sort |
Design of coaxial aircell fixture for the measurement of electromagnetic properties |
author |
Raju,V. Seetha Rama |
author_facet |
Raju,V. Seetha Rama |
author_role |
author |
dc.contributor.author.fl_str_mv |
Raju,V. Seetha Rama |
dc.subject.por.fl_str_mv |
Coaxial aircell S-parameters Complex permittivity Complex permeability |
topic |
Coaxial aircell S-parameters Complex permittivity Complex permeability |
description |
Abstract Coaxial aircells are designed and fabricated to measure the electromagnetic properties of ferrite materials in the frequency range from 1 MHz to 3.6 GHz. These S-parameters are actually measured connecting the aircell to a vector network analyzer (VNA). The electromagnetic properties such as complex permittivity and complex permeability are extracted using Nicolson-Ross-Weir (NRW) method and also suitable air-gap corrections are made. To optimize the measured result and to estimate the error, the aircells are characterized in terms of their phase constant and resistivity of the aircell conductor. The measurements clearly showed that the electrical length is longer than the mechanical length of the aircell at all frequencies. The arithmetic mean of the resistivity of aircell which is of 7mm line size and 60mm length is about 66 nΩm. This paper presents a simple method by which the phase constant and resistivity of the aircell can be determined accurately. This is done with the transmission measurements made using a VNA. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742017000300686 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742017000300686 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/2179-10742017v16i3908 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo |
publisher.none.fl_str_mv |
Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo |
dc.source.none.fl_str_mv |
Journal of Microwaves, Optoelectronics and Electromagnetic Applications v.16 n.3 2017 reponame:Journal of Microwaves. Optoelectronics and Electromagnetic Applications instname:Sociedade Brasileira de Microondas e Optoeletrônica (SBMO) instacron:SBMO |
instname_str |
Sociedade Brasileira de Microondas e Optoeletrônica (SBMO) |
instacron_str |
SBMO |
institution |
SBMO |
reponame_str |
Journal of Microwaves. Optoelectronics and Electromagnetic Applications |
collection |
Journal of Microwaves. Optoelectronics and Electromagnetic Applications |
repository.name.fl_str_mv |
Journal of Microwaves. Optoelectronics and Electromagnetic Applications - Sociedade Brasileira de Microondas e Optoeletrônica (SBMO) |
repository.mail.fl_str_mv |
||editor_jmoe@sbmo.org.br |
_version_ |
1752122126215675904 |