Novel Design of a Hybrid Superconducting Fault Current Limiter with Controlled Solid-State Device
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of Microwaves. Optoelectronics and Electromagnetic Applications |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742021000200334 |
Resumo: | Abstract Fault current limiters are essential devices used to protect the power system and its equipment against high levels of fault current, which are growing up due to the increase of new power sources. This paper proposes a novel design of a Hybrid Superconducting Fault Current Limiter (Hybrid SFCL), which is composed basically by thyristors in series with a superconducting element. This branch is connected in parallel to an air-core reactor, which improves limitation and ensures the safe operation of the superconductor element. Another advantage of this topology is the use of the voltage drop in the superconductor as an input parameter to the controller. This voltage is used to detect the fault, which avoids the need for a current sensor and, consequently, reduces the manufacturing costs. In this work, the PSCAD/EMTDC software was employed to modeling the Hybrid SFCL and the 2G superconducting tape, which was modeled considering the thermal-electrical analysis. The results show that the fault current is efficiently limited, and the developed controller strategy has shown a relatively good performance. Furthermore, the proposed system guarantees a fast recovery time, in the order of 500 ms, which is a good advantage when compared to the conventional resistive SFCL. |
id |
SBMO-1_3c5a831e0e8b0b61fd85e18484d0d7a6 |
---|---|
oai_identifier_str |
oai:scielo:S2179-10742021000200334 |
network_acronym_str |
SBMO-1 |
network_name_str |
Journal of Microwaves. Optoelectronics and Electromagnetic Applications |
repository_id_str |
|
spelling |
Novel Design of a Hybrid Superconducting Fault Current Limiter with Controlled Solid-State DeviceFault current limiterPower system protectionSubstation protectionSuperconducting materialsAbstract Fault current limiters are essential devices used to protect the power system and its equipment against high levels of fault current, which are growing up due to the increase of new power sources. This paper proposes a novel design of a Hybrid Superconducting Fault Current Limiter (Hybrid SFCL), which is composed basically by thyristors in series with a superconducting element. This branch is connected in parallel to an air-core reactor, which improves limitation and ensures the safe operation of the superconductor element. Another advantage of this topology is the use of the voltage drop in the superconductor as an input parameter to the controller. This voltage is used to detect the fault, which avoids the need for a current sensor and, consequently, reduces the manufacturing costs. In this work, the PSCAD/EMTDC software was employed to modeling the Hybrid SFCL and the 2G superconducting tape, which was modeled considering the thermal-electrical analysis. The results show that the fault current is efficiently limited, and the developed controller strategy has shown a relatively good performance. Furthermore, the proposed system guarantees a fast recovery time, in the order of 500 ms, which is a good advantage when compared to the conventional resistive SFCL.Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo2021-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742021000200334Journal of Microwaves, Optoelectronics and Electromagnetic Applications v.20 n.2 2021reponame:Journal of Microwaves. Optoelectronics and Electromagnetic Applicationsinstname:Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)instacron:SBMO10.1590/2179-10742021v20i21029info:eu-repo/semantics/openAccessMiyamoto,Henrique K.Queiroz,André T.Dias,Daniel H. N.França,Bruno W.Sass,FelipeSotelo,Guilherme G.eng2021-06-15T00:00:00Zoai:scielo:S2179-10742021000200334Revistahttp://www.jmoe.org/index.php/jmoe/indexONGhttps://old.scielo.br/oai/scielo-oai.php||editor_jmoe@sbmo.org.br2179-10742179-1074opendoar:2021-06-15T00:00Journal of Microwaves. Optoelectronics and Electromagnetic Applications - Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)false |
dc.title.none.fl_str_mv |
Novel Design of a Hybrid Superconducting Fault Current Limiter with Controlled Solid-State Device |
title |
Novel Design of a Hybrid Superconducting Fault Current Limiter with Controlled Solid-State Device |
spellingShingle |
Novel Design of a Hybrid Superconducting Fault Current Limiter with Controlled Solid-State Device Miyamoto,Henrique K. Fault current limiter Power system protection Substation protection Superconducting materials |
title_short |
Novel Design of a Hybrid Superconducting Fault Current Limiter with Controlled Solid-State Device |
title_full |
Novel Design of a Hybrid Superconducting Fault Current Limiter with Controlled Solid-State Device |
title_fullStr |
Novel Design of a Hybrid Superconducting Fault Current Limiter with Controlled Solid-State Device |
title_full_unstemmed |
Novel Design of a Hybrid Superconducting Fault Current Limiter with Controlled Solid-State Device |
title_sort |
Novel Design of a Hybrid Superconducting Fault Current Limiter with Controlled Solid-State Device |
author |
Miyamoto,Henrique K. |
author_facet |
Miyamoto,Henrique K. Queiroz,André T. Dias,Daniel H. N. França,Bruno W. Sass,Felipe Sotelo,Guilherme G. |
author_role |
author |
author2 |
Queiroz,André T. Dias,Daniel H. N. França,Bruno W. Sass,Felipe Sotelo,Guilherme G. |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Miyamoto,Henrique K. Queiroz,André T. Dias,Daniel H. N. França,Bruno W. Sass,Felipe Sotelo,Guilherme G. |
dc.subject.por.fl_str_mv |
Fault current limiter Power system protection Substation protection Superconducting materials |
topic |
Fault current limiter Power system protection Substation protection Superconducting materials |
description |
Abstract Fault current limiters are essential devices used to protect the power system and its equipment against high levels of fault current, which are growing up due to the increase of new power sources. This paper proposes a novel design of a Hybrid Superconducting Fault Current Limiter (Hybrid SFCL), which is composed basically by thyristors in series with a superconducting element. This branch is connected in parallel to an air-core reactor, which improves limitation and ensures the safe operation of the superconductor element. Another advantage of this topology is the use of the voltage drop in the superconductor as an input parameter to the controller. This voltage is used to detect the fault, which avoids the need for a current sensor and, consequently, reduces the manufacturing costs. In this work, the PSCAD/EMTDC software was employed to modeling the Hybrid SFCL and the 2G superconducting tape, which was modeled considering the thermal-electrical analysis. The results show that the fault current is efficiently limited, and the developed controller strategy has shown a relatively good performance. Furthermore, the proposed system guarantees a fast recovery time, in the order of 500 ms, which is a good advantage when compared to the conventional resistive SFCL. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742021000200334 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742021000200334 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/2179-10742021v20i21029 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo |
publisher.none.fl_str_mv |
Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo |
dc.source.none.fl_str_mv |
Journal of Microwaves, Optoelectronics and Electromagnetic Applications v.20 n.2 2021 reponame:Journal of Microwaves. Optoelectronics and Electromagnetic Applications instname:Sociedade Brasileira de Microondas e Optoeletrônica (SBMO) instacron:SBMO |
instname_str |
Sociedade Brasileira de Microondas e Optoeletrônica (SBMO) |
instacron_str |
SBMO |
institution |
SBMO |
reponame_str |
Journal of Microwaves. Optoelectronics and Electromagnetic Applications |
collection |
Journal of Microwaves. Optoelectronics and Electromagnetic Applications |
repository.name.fl_str_mv |
Journal of Microwaves. Optoelectronics and Electromagnetic Applications - Sociedade Brasileira de Microondas e Optoeletrônica (SBMO) |
repository.mail.fl_str_mv |
||editor_jmoe@sbmo.org.br |
_version_ |
1752122127008399360 |