Design of a Triple Band-notched UWB Planar Monopole Antenna

Detalhes bibliográficos
Autor(a) principal: Tomar,Sanjiv
Data de Publicação: 2015
Outros Autores: Kumar,Ajay
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of Microwaves. Optoelectronics and Electromagnetic Applications
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742015000200184
Resumo: Abstract In this paper, a novel design of a compact planar ultra wide band (UWB) monopole antenna with triple band notched characteristics has been presented. The antenna has a unique shape and has been fed through a 50 Ω microstrip feedline. The strength of the antenna lies in three band notched properties for WiMax system at 3.3 - 3.7 GHz, WLAN IEEE 802.11a at 5.15 - 5.85 GHz and X band satellite communication at 7.25 - 8.395 GHz. The notched bands have been achieved by incorporating an inverted U-slot etched on the radiator patch, an inverted C-slot also on the radiator patch and a U-slot on the microstrip feed line. In order to achieve FCC defined impedance bandwidth of 7.5 GHz, a rectangular cut in the ground plane has been introduced along with staircase structure in the bottom edge of the radiator. The proposed antenna is having a compact size of 30 X 30 X 1.6 mm3 and exhibits a large bandwidth from 2.8 GHz to 10.7 GHz. The antenna has been successfully simulated and fabricated. The radiation pattern is omni-directional in H-plane and the E-plane exhibits dipole like radiation pattern. The gain of the antenna is stable across the whole operating frequency band except at three notched bands.
id SBMO-1_8117e5d18c9203f71191c72db09d33ad
oai_identifier_str oai:scielo:S2179-10742015000200184
network_acronym_str SBMO-1
network_name_str Journal of Microwaves. Optoelectronics and Electromagnetic Applications
repository_id_str
spelling Design of a Triple Band-notched UWB Planar Monopole AntennaUltra-wideband (UWB)Triple band-notched antennaplanar UWB antennaslotted ground planeC-shaped slotU-shaped slotWLANWiMaxAbstract In this paper, a novel design of a compact planar ultra wide band (UWB) monopole antenna with triple band notched characteristics has been presented. The antenna has a unique shape and has been fed through a 50 Ω microstrip feedline. The strength of the antenna lies in three band notched properties for WiMax system at 3.3 - 3.7 GHz, WLAN IEEE 802.11a at 5.15 - 5.85 GHz and X band satellite communication at 7.25 - 8.395 GHz. The notched bands have been achieved by incorporating an inverted U-slot etched on the radiator patch, an inverted C-slot also on the radiator patch and a U-slot on the microstrip feed line. In order to achieve FCC defined impedance bandwidth of 7.5 GHz, a rectangular cut in the ground plane has been introduced along with staircase structure in the bottom edge of the radiator. The proposed antenna is having a compact size of 30 X 30 X 1.6 mm3 and exhibits a large bandwidth from 2.8 GHz to 10.7 GHz. The antenna has been successfully simulated and fabricated. The radiation pattern is omni-directional in H-plane and the E-plane exhibits dipole like radiation pattern. The gain of the antenna is stable across the whole operating frequency band except at three notched bands.Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo2015-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742015000200184Journal of Microwaves, Optoelectronics and Electromagnetic Applications v.14 n.2 2015reponame:Journal of Microwaves. Optoelectronics and Electromagnetic Applicationsinstname:Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)instacron:SBMO10.1590/2179-10742015v14i2514info:eu-repo/semantics/openAccessTomar,SanjivKumar,Ajayeng2016-01-08T00:00:00Zoai:scielo:S2179-10742015000200184Revistahttp://www.jmoe.org/index.php/jmoe/indexONGhttps://old.scielo.br/oai/scielo-oai.php||editor_jmoe@sbmo.org.br2179-10742179-1074opendoar:2016-01-08T00:00Journal of Microwaves. Optoelectronics and Electromagnetic Applications - Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)false
dc.title.none.fl_str_mv Design of a Triple Band-notched UWB Planar Monopole Antenna
title Design of a Triple Band-notched UWB Planar Monopole Antenna
spellingShingle Design of a Triple Band-notched UWB Planar Monopole Antenna
Tomar,Sanjiv
Ultra-wideband (UWB)
Triple band-notched antenna
planar UWB antenna
slotted ground plane
C-shaped slot
U-shaped slot
WLAN
WiMax
title_short Design of a Triple Band-notched UWB Planar Monopole Antenna
title_full Design of a Triple Band-notched UWB Planar Monopole Antenna
title_fullStr Design of a Triple Band-notched UWB Planar Monopole Antenna
title_full_unstemmed Design of a Triple Band-notched UWB Planar Monopole Antenna
title_sort Design of a Triple Band-notched UWB Planar Monopole Antenna
author Tomar,Sanjiv
author_facet Tomar,Sanjiv
Kumar,Ajay
author_role author
author2 Kumar,Ajay
author2_role author
dc.contributor.author.fl_str_mv Tomar,Sanjiv
Kumar,Ajay
dc.subject.por.fl_str_mv Ultra-wideband (UWB)
Triple band-notched antenna
planar UWB antenna
slotted ground plane
C-shaped slot
U-shaped slot
WLAN
WiMax
topic Ultra-wideband (UWB)
Triple band-notched antenna
planar UWB antenna
slotted ground plane
C-shaped slot
U-shaped slot
WLAN
WiMax
description Abstract In this paper, a novel design of a compact planar ultra wide band (UWB) monopole antenna with triple band notched characteristics has been presented. The antenna has a unique shape and has been fed through a 50 Ω microstrip feedline. The strength of the antenna lies in three band notched properties for WiMax system at 3.3 - 3.7 GHz, WLAN IEEE 802.11a at 5.15 - 5.85 GHz and X band satellite communication at 7.25 - 8.395 GHz. The notched bands have been achieved by incorporating an inverted U-slot etched on the radiator patch, an inverted C-slot also on the radiator patch and a U-slot on the microstrip feed line. In order to achieve FCC defined impedance bandwidth of 7.5 GHz, a rectangular cut in the ground plane has been introduced along with staircase structure in the bottom edge of the radiator. The proposed antenna is having a compact size of 30 X 30 X 1.6 mm3 and exhibits a large bandwidth from 2.8 GHz to 10.7 GHz. The antenna has been successfully simulated and fabricated. The radiation pattern is omni-directional in H-plane and the E-plane exhibits dipole like radiation pattern. The gain of the antenna is stable across the whole operating frequency band except at three notched bands.
publishDate 2015
dc.date.none.fl_str_mv 2015-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742015000200184
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742015000200184
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/2179-10742015v14i2514
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo
publisher.none.fl_str_mv Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo
dc.source.none.fl_str_mv Journal of Microwaves, Optoelectronics and Electromagnetic Applications v.14 n.2 2015
reponame:Journal of Microwaves. Optoelectronics and Electromagnetic Applications
instname:Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)
instacron:SBMO
instname_str Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)
instacron_str SBMO
institution SBMO
reponame_str Journal of Microwaves. Optoelectronics and Electromagnetic Applications
collection Journal of Microwaves. Optoelectronics and Electromagnetic Applications
repository.name.fl_str_mv Journal of Microwaves. Optoelectronics and Electromagnetic Applications - Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)
repository.mail.fl_str_mv ||editor_jmoe@sbmo.org.br
_version_ 1752122125808828416