Spectral Efficiency Analysis in Massive MIMO using FBMC-OQAM Modulation

Detalhes bibliográficos
Autor(a) principal: Jose,Felipe Kurpiel
Data de Publicação: 2018
Outros Autores: Lolis,Luis Henrique, Mafra,Samuel Baraldi, Ribeiro,Eduardo Parente
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of Microwaves. Optoelectronics and Electromagnetic Applications
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742018000400604
Resumo: Abstract This article covers the potential of Filter Bank Multicarrier (FBMC) modulation as an alternative to be used in the future 5G wireless networks in which Massive Multiple-Input Multiple-Output (MIMO) will be deployed. The study compares orthogonal frequency division multiplexing (OFDM) with FBMC. The former is the multiplexing technique in 4G communications and the latter is one of the strongest candidates to replace OFDM in 5G networks. This comparison evaluates the spectral efficiency (SE) of a Massive MIMO (MM) system uplink under a single-cell environment. The diversity in MM permits a self-equalization of the channel, which the FBMC further benefits from, due to the confinement of the subcarrier in an assigned range. Due to the absence of the cyclic prefix, the FBMC has better SE than the OFDM for increasing signal-to-noise-ratio (SNR). One may find a scarce literature covering the FBMC in a large-scale multiuser MIMO scenario, which considers a large number of antennas at the base station (BS). Various scenarios are considered by varying the number of antennas, users and different cell radius. Moreover, the subcarrier modulations are simulated, and not considered Gaussian distributed, as in Shannon limit theory. In some cases, the FBMC allows doubling the cell radius for the same SE value of 3.8 bits/s/Hz/user. For a fixed cell radius of 750m and a SE of 3.5 bits/s/Hz/user, the OFDM requires three times more antennas than FBMC when both modulations are under the same conditions.
id SBMO-1_8c227d9afff361720653d23823933a1f
oai_identifier_str oai:scielo:S2179-10742018000400604
network_acronym_str SBMO-1
network_name_str Journal of Microwaves. Optoelectronics and Electromagnetic Applications
repository_id_str
spelling Spectral Efficiency Analysis in Massive MIMO using FBMC-OQAM Modulation5GFBMCMassive MIMOSpectral EfficiencyAbstract This article covers the potential of Filter Bank Multicarrier (FBMC) modulation as an alternative to be used in the future 5G wireless networks in which Massive Multiple-Input Multiple-Output (MIMO) will be deployed. The study compares orthogonal frequency division multiplexing (OFDM) with FBMC. The former is the multiplexing technique in 4G communications and the latter is one of the strongest candidates to replace OFDM in 5G networks. This comparison evaluates the spectral efficiency (SE) of a Massive MIMO (MM) system uplink under a single-cell environment. The diversity in MM permits a self-equalization of the channel, which the FBMC further benefits from, due to the confinement of the subcarrier in an assigned range. Due to the absence of the cyclic prefix, the FBMC has better SE than the OFDM for increasing signal-to-noise-ratio (SNR). One may find a scarce literature covering the FBMC in a large-scale multiuser MIMO scenario, which considers a large number of antennas at the base station (BS). Various scenarios are considered by varying the number of antennas, users and different cell radius. Moreover, the subcarrier modulations are simulated, and not considered Gaussian distributed, as in Shannon limit theory. In some cases, the FBMC allows doubling the cell radius for the same SE value of 3.8 bits/s/Hz/user. For a fixed cell radius of 750m and a SE of 3.5 bits/s/Hz/user, the OFDM requires three times more antennas than FBMC when both modulations are under the same conditions.Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo2018-10-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742018000400604Journal of Microwaves, Optoelectronics and Electromagnetic Applications v.17 n.4 2018reponame:Journal of Microwaves. Optoelectronics and Electromagnetic Applicationsinstname:Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)instacron:SBMO10.1590/2179-10742018v17i41544info:eu-repo/semantics/openAccessJose,Felipe KurpielLolis,Luis HenriqueMafra,Samuel BaraldiRibeiro,Eduardo Parenteeng2018-12-06T00:00:00Zoai:scielo:S2179-10742018000400604Revistahttp://www.jmoe.org/index.php/jmoe/indexONGhttps://old.scielo.br/oai/scielo-oai.php||editor_jmoe@sbmo.org.br2179-10742179-1074opendoar:2018-12-06T00:00Journal of Microwaves. Optoelectronics and Electromagnetic Applications - Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)false
dc.title.none.fl_str_mv Spectral Efficiency Analysis in Massive MIMO using FBMC-OQAM Modulation
title Spectral Efficiency Analysis in Massive MIMO using FBMC-OQAM Modulation
spellingShingle Spectral Efficiency Analysis in Massive MIMO using FBMC-OQAM Modulation
Jose,Felipe Kurpiel
5G
FBMC
Massive MIMO
Spectral Efficiency
title_short Spectral Efficiency Analysis in Massive MIMO using FBMC-OQAM Modulation
title_full Spectral Efficiency Analysis in Massive MIMO using FBMC-OQAM Modulation
title_fullStr Spectral Efficiency Analysis in Massive MIMO using FBMC-OQAM Modulation
title_full_unstemmed Spectral Efficiency Analysis in Massive MIMO using FBMC-OQAM Modulation
title_sort Spectral Efficiency Analysis in Massive MIMO using FBMC-OQAM Modulation
author Jose,Felipe Kurpiel
author_facet Jose,Felipe Kurpiel
Lolis,Luis Henrique
Mafra,Samuel Baraldi
Ribeiro,Eduardo Parente
author_role author
author2 Lolis,Luis Henrique
Mafra,Samuel Baraldi
Ribeiro,Eduardo Parente
author2_role author
author
author
dc.contributor.author.fl_str_mv Jose,Felipe Kurpiel
Lolis,Luis Henrique
Mafra,Samuel Baraldi
Ribeiro,Eduardo Parente
dc.subject.por.fl_str_mv 5G
FBMC
Massive MIMO
Spectral Efficiency
topic 5G
FBMC
Massive MIMO
Spectral Efficiency
description Abstract This article covers the potential of Filter Bank Multicarrier (FBMC) modulation as an alternative to be used in the future 5G wireless networks in which Massive Multiple-Input Multiple-Output (MIMO) will be deployed. The study compares orthogonal frequency division multiplexing (OFDM) with FBMC. The former is the multiplexing technique in 4G communications and the latter is one of the strongest candidates to replace OFDM in 5G networks. This comparison evaluates the spectral efficiency (SE) of a Massive MIMO (MM) system uplink under a single-cell environment. The diversity in MM permits a self-equalization of the channel, which the FBMC further benefits from, due to the confinement of the subcarrier in an assigned range. Due to the absence of the cyclic prefix, the FBMC has better SE than the OFDM for increasing signal-to-noise-ratio (SNR). One may find a scarce literature covering the FBMC in a large-scale multiuser MIMO scenario, which considers a large number of antennas at the base station (BS). Various scenarios are considered by varying the number of antennas, users and different cell radius. Moreover, the subcarrier modulations are simulated, and not considered Gaussian distributed, as in Shannon limit theory. In some cases, the FBMC allows doubling the cell radius for the same SE value of 3.8 bits/s/Hz/user. For a fixed cell radius of 750m and a SE of 3.5 bits/s/Hz/user, the OFDM requires three times more antennas than FBMC when both modulations are under the same conditions.
publishDate 2018
dc.date.none.fl_str_mv 2018-10-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742018000400604
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742018000400604
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/2179-10742018v17i41544
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo
publisher.none.fl_str_mv Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo
dc.source.none.fl_str_mv Journal of Microwaves, Optoelectronics and Electromagnetic Applications v.17 n.4 2018
reponame:Journal of Microwaves. Optoelectronics and Electromagnetic Applications
instname:Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)
instacron:SBMO
instname_str Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)
instacron_str SBMO
institution SBMO
reponame_str Journal of Microwaves. Optoelectronics and Electromagnetic Applications
collection Journal of Microwaves. Optoelectronics and Electromagnetic Applications
repository.name.fl_str_mv Journal of Microwaves. Optoelectronics and Electromagnetic Applications - Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)
repository.mail.fl_str_mv ||editor_jmoe@sbmo.org.br
_version_ 1752122126590017536