Angle of Incidence and Polarization Insensitive Ultra-Thin Ultra Wide-Band Metamaterial Absorber based on Novel Non-Linearity in Unit Cell Design
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of Microwaves. Optoelectronics and Electromagnetic Applications |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742021000300556 |
Resumo: | Abstract A new design of an ultra wide-band metamaterial absorber (MMA), with appreciable high absorptance insensitive to angle of incidence and polarization angle is presented in the manuscript. The MMA structure consists of three concentric rings with non-linear variation in the spacing and the thickness of the rings is controlled by a single parameter. The idea of utilizing nonlinear variation based unit cell resulted in high absorptance ultra wide-band frequency spectrum in X -band. The proposed MMA design is three layered structure. The metamaterial nature of the proposed device is explained by simulated values of Z eff( f ), μ eff( f ), ε eff( f ), and η eff( f ). The FWHM bandwidth of proposed MMA is 6.32 GHz (7.36 GHz-13.68 GHz). The fabricated MMA is ultra-thin with thickness of λo/15.3 at centre frequency 9.8 GHz. The experimental results show absorptance greater than 99% at 7.9 GHz and 11.7 GHz, covering entire X -band range makes this MMA appropriate for providing stealth technology for defense equipments by reducing radar cross section (RCS). |
id |
SBMO-1_d6750549f9c40bbc951e123fca2bd2ae |
---|---|
oai_identifier_str |
oai:scielo:S2179-10742021000300556 |
network_acronym_str |
SBMO-1 |
network_name_str |
Journal of Microwaves. Optoelectronics and Electromagnetic Applications |
repository_id_str |
|
spelling |
Angle of Incidence and Polarization Insensitive Ultra-Thin Ultra Wide-Band Metamaterial Absorber based on Novel Non-Linearity in Unit Cell Designabsorptancemicrowave absorberreflectanceresonatorwidebandAbstract A new design of an ultra wide-band metamaterial absorber (MMA), with appreciable high absorptance insensitive to angle of incidence and polarization angle is presented in the manuscript. The MMA structure consists of three concentric rings with non-linear variation in the spacing and the thickness of the rings is controlled by a single parameter. The idea of utilizing nonlinear variation based unit cell resulted in high absorptance ultra wide-band frequency spectrum in X -band. The proposed MMA design is three layered structure. The metamaterial nature of the proposed device is explained by simulated values of Z eff( f ), μ eff( f ), ε eff( f ), and η eff( f ). The FWHM bandwidth of proposed MMA is 6.32 GHz (7.36 GHz-13.68 GHz). The fabricated MMA is ultra-thin with thickness of λo/15.3 at centre frequency 9.8 GHz. The experimental results show absorptance greater than 99% at 7.9 GHz and 11.7 GHz, covering entire X -band range makes this MMA appropriate for providing stealth technology for defense equipments by reducing radar cross section (RCS).Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo2021-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742021000300556Journal of Microwaves, Optoelectronics and Electromagnetic Applications v.20 n.3 2021reponame:Journal of Microwaves. Optoelectronics and Electromagnetic Applicationsinstname:Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)instacron:SBMO10.1590/2179-10742021v20i31207info:eu-repo/semantics/openAccessAgrawal,AlkeshMisra,Mukuleng2021-09-24T00:00:00Zoai:scielo:S2179-10742021000300556Revistahttp://www.jmoe.org/index.php/jmoe/indexONGhttps://old.scielo.br/oai/scielo-oai.php||editor_jmoe@sbmo.org.br2179-10742179-1074opendoar:2021-09-24T00:00Journal of Microwaves. Optoelectronics and Electromagnetic Applications - Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)false |
dc.title.none.fl_str_mv |
Angle of Incidence and Polarization Insensitive Ultra-Thin Ultra Wide-Band Metamaterial Absorber based on Novel Non-Linearity in Unit Cell Design |
title |
Angle of Incidence and Polarization Insensitive Ultra-Thin Ultra Wide-Band Metamaterial Absorber based on Novel Non-Linearity in Unit Cell Design |
spellingShingle |
Angle of Incidence and Polarization Insensitive Ultra-Thin Ultra Wide-Band Metamaterial Absorber based on Novel Non-Linearity in Unit Cell Design Agrawal,Alkesh absorptance microwave absorber reflectance resonator wideband |
title_short |
Angle of Incidence and Polarization Insensitive Ultra-Thin Ultra Wide-Band Metamaterial Absorber based on Novel Non-Linearity in Unit Cell Design |
title_full |
Angle of Incidence and Polarization Insensitive Ultra-Thin Ultra Wide-Band Metamaterial Absorber based on Novel Non-Linearity in Unit Cell Design |
title_fullStr |
Angle of Incidence and Polarization Insensitive Ultra-Thin Ultra Wide-Band Metamaterial Absorber based on Novel Non-Linearity in Unit Cell Design |
title_full_unstemmed |
Angle of Incidence and Polarization Insensitive Ultra-Thin Ultra Wide-Band Metamaterial Absorber based on Novel Non-Linearity in Unit Cell Design |
title_sort |
Angle of Incidence and Polarization Insensitive Ultra-Thin Ultra Wide-Band Metamaterial Absorber based on Novel Non-Linearity in Unit Cell Design |
author |
Agrawal,Alkesh |
author_facet |
Agrawal,Alkesh Misra,Mukul |
author_role |
author |
author2 |
Misra,Mukul |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Agrawal,Alkesh Misra,Mukul |
dc.subject.por.fl_str_mv |
absorptance microwave absorber reflectance resonator wideband |
topic |
absorptance microwave absorber reflectance resonator wideband |
description |
Abstract A new design of an ultra wide-band metamaterial absorber (MMA), with appreciable high absorptance insensitive to angle of incidence and polarization angle is presented in the manuscript. The MMA structure consists of three concentric rings with non-linear variation in the spacing and the thickness of the rings is controlled by a single parameter. The idea of utilizing nonlinear variation based unit cell resulted in high absorptance ultra wide-band frequency spectrum in X -band. The proposed MMA design is three layered structure. The metamaterial nature of the proposed device is explained by simulated values of Z eff( f ), μ eff( f ), ε eff( f ), and η eff( f ). The FWHM bandwidth of proposed MMA is 6.32 GHz (7.36 GHz-13.68 GHz). The fabricated MMA is ultra-thin with thickness of λo/15.3 at centre frequency 9.8 GHz. The experimental results show absorptance greater than 99% at 7.9 GHz and 11.7 GHz, covering entire X -band range makes this MMA appropriate for providing stealth technology for defense equipments by reducing radar cross section (RCS). |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742021000300556 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742021000300556 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/2179-10742021v20i31207 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo |
publisher.none.fl_str_mv |
Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo |
dc.source.none.fl_str_mv |
Journal of Microwaves, Optoelectronics and Electromagnetic Applications v.20 n.3 2021 reponame:Journal of Microwaves. Optoelectronics and Electromagnetic Applications instname:Sociedade Brasileira de Microondas e Optoeletrônica (SBMO) instacron:SBMO |
instname_str |
Sociedade Brasileira de Microondas e Optoeletrônica (SBMO) |
instacron_str |
SBMO |
institution |
SBMO |
reponame_str |
Journal of Microwaves. Optoelectronics and Electromagnetic Applications |
collection |
Journal of Microwaves. Optoelectronics and Electromagnetic Applications |
repository.name.fl_str_mv |
Journal of Microwaves. Optoelectronics and Electromagnetic Applications - Sociedade Brasileira de Microondas e Optoeletrônica (SBMO) |
repository.mail.fl_str_mv |
||editor_jmoe@sbmo.org.br |
_version_ |
1752122127036710912 |