Performance evaluation of PCRR based add drop filter with different rod shapes

Detalhes bibliográficos
Autor(a) principal: Robinson,S.
Data de Publicação: 2012
Outros Autores: Nakkeeran,R.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of Microwaves. Optoelectronics and Electromagnetic Applications
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742012000100003
Resumo: Two Dimensional (2D) circular Photonic Crystal Ring Resonator (PCRR) based Add Drop Filter (ADF) is designed and the impacts of rod shape with its filling fraction is examined to evaluate the performance of the filter. The ADFs are devised separately using rods of circular, hexagonal and square shape in square lattice PC. For various values of rod’s cross sectional dimension and shape, the resonant wavelength, coupling efficiency, dropping efficiency, Q factor and passband width of the designed filters are investigated through simulation. The calculated filling fraction of a square, circular and hexagonal rods in the lattice structure is 11.9006 × 10-12 sq.m, 13.1134 × 10-12 sq.m and 15.16 × 10-12 sq.m and their respective resonant wavelength is 1494 nm, 1504 nm and 1520 nm. It is observed that there is 1 nm wavelength shift to longer wavelength while increasing the overall filling fraction by 0.1233 × 10-12 sq.m. From the simulated results, it is observed that the circular and hexagonal rods based ADF impart better performance than square rod based ADF.
id SBMO-1_dd59ff2fa9e925fb9a080d4cd4c135cb
oai_identifier_str oai:scielo:S2179-10742012000100003
network_acronym_str SBMO-1
network_name_str Journal of Microwaves. Optoelectronics and Electromagnetic Applications
repository_id_str
spelling Performance evaluation of PCRR based add drop filter with different rod shapesPhotonic crystalphotonic band gaprod shapeadd drop filterTwo Dimensional (2D) circular Photonic Crystal Ring Resonator (PCRR) based Add Drop Filter (ADF) is designed and the impacts of rod shape with its filling fraction is examined to evaluate the performance of the filter. The ADFs are devised separately using rods of circular, hexagonal and square shape in square lattice PC. For various values of rod’s cross sectional dimension and shape, the resonant wavelength, coupling efficiency, dropping efficiency, Q factor and passband width of the designed filters are investigated through simulation. The calculated filling fraction of a square, circular and hexagonal rods in the lattice structure is 11.9006 × 10-12 sq.m, 13.1134 × 10-12 sq.m and 15.16 × 10-12 sq.m and their respective resonant wavelength is 1494 nm, 1504 nm and 1520 nm. It is observed that there is 1 nm wavelength shift to longer wavelength while increasing the overall filling fraction by 0.1233 × 10-12 sq.m. From the simulated results, it is observed that the circular and hexagonal rods based ADF impart better performance than square rod based ADF.Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo2012-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742012000100003Journal of Microwaves, Optoelectronics and Electromagnetic Applications v.11 n.1 2012reponame:Journal of Microwaves. Optoelectronics and Electromagnetic Applicationsinstname:Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)instacron:SBMO10.1590/S2179-10742012000100003info:eu-repo/semantics/openAccessRobinson,S.Nakkeeran,R.eng2012-07-16T00:00:00Zoai:scielo:S2179-10742012000100003Revistahttp://www.jmoe.org/index.php/jmoe/indexONGhttps://old.scielo.br/oai/scielo-oai.php||editor_jmoe@sbmo.org.br2179-10742179-1074opendoar:2012-07-16T00:00Journal of Microwaves. Optoelectronics and Electromagnetic Applications - Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)false
dc.title.none.fl_str_mv Performance evaluation of PCRR based add drop filter with different rod shapes
title Performance evaluation of PCRR based add drop filter with different rod shapes
spellingShingle Performance evaluation of PCRR based add drop filter with different rod shapes
Robinson,S.
Photonic crystal
photonic band gap
rod shape
add drop filter
title_short Performance evaluation of PCRR based add drop filter with different rod shapes
title_full Performance evaluation of PCRR based add drop filter with different rod shapes
title_fullStr Performance evaluation of PCRR based add drop filter with different rod shapes
title_full_unstemmed Performance evaluation of PCRR based add drop filter with different rod shapes
title_sort Performance evaluation of PCRR based add drop filter with different rod shapes
author Robinson,S.
author_facet Robinson,S.
Nakkeeran,R.
author_role author
author2 Nakkeeran,R.
author2_role author
dc.contributor.author.fl_str_mv Robinson,S.
Nakkeeran,R.
dc.subject.por.fl_str_mv Photonic crystal
photonic band gap
rod shape
add drop filter
topic Photonic crystal
photonic band gap
rod shape
add drop filter
description Two Dimensional (2D) circular Photonic Crystal Ring Resonator (PCRR) based Add Drop Filter (ADF) is designed and the impacts of rod shape with its filling fraction is examined to evaluate the performance of the filter. The ADFs are devised separately using rods of circular, hexagonal and square shape in square lattice PC. For various values of rod’s cross sectional dimension and shape, the resonant wavelength, coupling efficiency, dropping efficiency, Q factor and passband width of the designed filters are investigated through simulation. The calculated filling fraction of a square, circular and hexagonal rods in the lattice structure is 11.9006 × 10-12 sq.m, 13.1134 × 10-12 sq.m and 15.16 × 10-12 sq.m and their respective resonant wavelength is 1494 nm, 1504 nm and 1520 nm. It is observed that there is 1 nm wavelength shift to longer wavelength while increasing the overall filling fraction by 0.1233 × 10-12 sq.m. From the simulated results, it is observed that the circular and hexagonal rods based ADF impart better performance than square rod based ADF.
publishDate 2012
dc.date.none.fl_str_mv 2012-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742012000100003
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742012000100003
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S2179-10742012000100003
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo
publisher.none.fl_str_mv Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo
dc.source.none.fl_str_mv Journal of Microwaves, Optoelectronics and Electromagnetic Applications v.11 n.1 2012
reponame:Journal of Microwaves. Optoelectronics and Electromagnetic Applications
instname:Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)
instacron:SBMO
instname_str Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)
instacron_str SBMO
institution SBMO
reponame_str Journal of Microwaves. Optoelectronics and Electromagnetic Applications
collection Journal of Microwaves. Optoelectronics and Electromagnetic Applications
repository.name.fl_str_mv Journal of Microwaves. Optoelectronics and Electromagnetic Applications - Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)
repository.mail.fl_str_mv ||editor_jmoe@sbmo.org.br
_version_ 1752122125389398016