Dumbbell Shaped Microstrip Broadband Antenna

Detalhes bibliográficos
Autor(a) principal: Baudha,Sudeep
Data de Publicação: 2019
Outros Autores: Garg,Harshit, Yadav,Manish Varun
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of Microwaves. Optoelectronics and Electromagnetic Applications
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742019000100033
Resumo: Abstract In this article, a dumbbell shaped microstrip broadband microstrip antenna with partial ground plane is presented, The overall dimension of the proposed antenna is 20 × 15 × 1.5 mm3 and is fabricated on FR4 substrate which has electrical permittivity of 4.3 and loss tangent of 0.025. FR4 is a low cost and easily available. The thickness of the substrate is 1.5 mm. The impedance bandwidth of the proposed antenna is 151.11 % (3.48 GHz to 25 GHz). The peak gain and radiation efficiency of the proposed antenna are 4.5 dB and 68 % respectively in the operating frequency band. Due to introduction of rings on the edges of the octagon and cutting of circular slots with the rectangular slits in the ground plane the antenna starts resonating from 3.48 GHz to 25 GHz. Simulated results are in good agreement with the measured results. The proposed antenna covers partial frequency range for ultra-wide band applications, 3.5/5.5 GHz WiMAX band, 5.2/5.8 GHz WLAN band, 8/12 GHz X-band, 12/18 GHz Ku -band. It can be used in space and satellite communications etc. Curves of radiation pattern and S-parameter of both simulated and measured results are shown. The impedance curves, surface current, radiation efficiency, simulated return losses, gain, and radiation patterns of the proposed antenna are described in the paper.
id SBMO-1_f2110586af8bef700690f9b9a216eca2
oai_identifier_str oai:scielo:S2179-10742019000100033
network_acronym_str SBMO-1
network_name_str Journal of Microwaves. Optoelectronics and Electromagnetic Applications
repository_id_str
spelling Dumbbell Shaped Microstrip Broadband AntennaBroadband AntennaFractional BandwidthDumbbell ShapePartial Ground PlaneSatellite CommunicationAbstract In this article, a dumbbell shaped microstrip broadband microstrip antenna with partial ground plane is presented, The overall dimension of the proposed antenna is 20 × 15 × 1.5 mm3 and is fabricated on FR4 substrate which has electrical permittivity of 4.3 and loss tangent of 0.025. FR4 is a low cost and easily available. The thickness of the substrate is 1.5 mm. The impedance bandwidth of the proposed antenna is 151.11 % (3.48 GHz to 25 GHz). The peak gain and radiation efficiency of the proposed antenna are 4.5 dB and 68 % respectively in the operating frequency band. Due to introduction of rings on the edges of the octagon and cutting of circular slots with the rectangular slits in the ground plane the antenna starts resonating from 3.48 GHz to 25 GHz. Simulated results are in good agreement with the measured results. The proposed antenna covers partial frequency range for ultra-wide band applications, 3.5/5.5 GHz WiMAX band, 5.2/5.8 GHz WLAN band, 8/12 GHz X-band, 12/18 GHz Ku -band. It can be used in space and satellite communications etc. Curves of radiation pattern and S-parameter of both simulated and measured results are shown. The impedance curves, surface current, radiation efficiency, simulated return losses, gain, and radiation patterns of the proposed antenna are described in the paper.Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo2019-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742019000100033Journal of Microwaves, Optoelectronics and Electromagnetic Applications v.18 n.1 2019reponame:Journal of Microwaves. Optoelectronics and Electromagnetic Applicationsinstname:Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)instacron:SBMO10.1590/2179-10742019v18i11371info:eu-repo/semantics/openAccessBaudha,SudeepGarg,HarshitYadav,Manish Varuneng2019-03-19T00:00:00Zoai:scielo:S2179-10742019000100033Revistahttp://www.jmoe.org/index.php/jmoe/indexONGhttps://old.scielo.br/oai/scielo-oai.php||editor_jmoe@sbmo.org.br2179-10742179-1074opendoar:2019-03-19T00:00Journal of Microwaves. Optoelectronics and Electromagnetic Applications - Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)false
dc.title.none.fl_str_mv Dumbbell Shaped Microstrip Broadband Antenna
title Dumbbell Shaped Microstrip Broadband Antenna
spellingShingle Dumbbell Shaped Microstrip Broadband Antenna
Baudha,Sudeep
Broadband Antenna
Fractional Bandwidth
Dumbbell Shape
Partial Ground Plane
Satellite Communication
title_short Dumbbell Shaped Microstrip Broadband Antenna
title_full Dumbbell Shaped Microstrip Broadband Antenna
title_fullStr Dumbbell Shaped Microstrip Broadband Antenna
title_full_unstemmed Dumbbell Shaped Microstrip Broadband Antenna
title_sort Dumbbell Shaped Microstrip Broadband Antenna
author Baudha,Sudeep
author_facet Baudha,Sudeep
Garg,Harshit
Yadav,Manish Varun
author_role author
author2 Garg,Harshit
Yadav,Manish Varun
author2_role author
author
dc.contributor.author.fl_str_mv Baudha,Sudeep
Garg,Harshit
Yadav,Manish Varun
dc.subject.por.fl_str_mv Broadband Antenna
Fractional Bandwidth
Dumbbell Shape
Partial Ground Plane
Satellite Communication
topic Broadband Antenna
Fractional Bandwidth
Dumbbell Shape
Partial Ground Plane
Satellite Communication
description Abstract In this article, a dumbbell shaped microstrip broadband microstrip antenna with partial ground plane is presented, The overall dimension of the proposed antenna is 20 × 15 × 1.5 mm3 and is fabricated on FR4 substrate which has electrical permittivity of 4.3 and loss tangent of 0.025. FR4 is a low cost and easily available. The thickness of the substrate is 1.5 mm. The impedance bandwidth of the proposed antenna is 151.11 % (3.48 GHz to 25 GHz). The peak gain and radiation efficiency of the proposed antenna are 4.5 dB and 68 % respectively in the operating frequency band. Due to introduction of rings on the edges of the octagon and cutting of circular slots with the rectangular slits in the ground plane the antenna starts resonating from 3.48 GHz to 25 GHz. Simulated results are in good agreement with the measured results. The proposed antenna covers partial frequency range for ultra-wide band applications, 3.5/5.5 GHz WiMAX band, 5.2/5.8 GHz WLAN band, 8/12 GHz X-band, 12/18 GHz Ku -band. It can be used in space and satellite communications etc. Curves of radiation pattern and S-parameter of both simulated and measured results are shown. The impedance curves, surface current, radiation efficiency, simulated return losses, gain, and radiation patterns of the proposed antenna are described in the paper.
publishDate 2019
dc.date.none.fl_str_mv 2019-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742019000100033
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742019000100033
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/2179-10742019v18i11371
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo
publisher.none.fl_str_mv Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo
dc.source.none.fl_str_mv Journal of Microwaves, Optoelectronics and Electromagnetic Applications v.18 n.1 2019
reponame:Journal of Microwaves. Optoelectronics and Electromagnetic Applications
instname:Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)
instacron:SBMO
instname_str Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)
instacron_str SBMO
institution SBMO
reponame_str Journal of Microwaves. Optoelectronics and Electromagnetic Applications
collection Journal of Microwaves. Optoelectronics and Electromagnetic Applications
repository.name.fl_str_mv Journal of Microwaves. Optoelectronics and Electromagnetic Applications - Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)
repository.mail.fl_str_mv ||editor_jmoe@sbmo.org.br
_version_ 1752122126601551872