Clustered Regularly Interspaced Short Palindromic Repeats/ CRISPR associated protein 9-mediated editing of Schistosoma mansoni genes: Identifying genes for immunologically potent drug and vaccine development

Detalhes bibliográficos
Autor(a) principal: Naidoo,Pragalathan
Data de Publicação: 2022
Outros Autores: Mkhize-Kwitshana,Zilungile Lynette
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista da Sociedade Brasileira de Medicina Tropical
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0037-86822022000100204
Resumo: ABSTRACT Schistosomiasis is a neglected acute and chronic tropical disease caused by intestinal (Schistosoma mansoni and Schistosoma japonicum) and urogenital (Schistosoma haematobium) helminth parasites (blood flukes or digenetic trematodes). It afflicts over 250 million people worldwide, the majority of whom reside in impoverished tropical and subtropical regions in sub-Saharan Africa. Schistosomiasis is the second most common devastating parasitic disease in the world after malaria and causes over 200,000 deaths annually. Currently, there is no effective and approved vaccine available for human use, and treatment strongly relies on praziquantel drug therapy, which is ineffective in killing immature larval schistosomula stages and eggs already lodged in the tissues. The Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9 (CRISPR/Cas9)-mediated gene editing tool is used to deactivate a gene of interest to scrutinize its role in health and disease, and to identify genes for vaccine and drug targeting. The present review aims to summarize the major findings from the current literature reporting the usage of CRISPR/Cas9-mediated gene editing to inactivate genes in S. mansoni (acetylcholinesterase (AChE), T2 ribonuclease omega-1 (ω1), sulfotransferase oxamniquine resistance protein (SULT-OR), and α-N-acetylgalactosaminidase (SmNAGAL)), and freshwater gastropod snails, Biomphalaria glabrata (allograft inflammatory factor (BgAIF)), an obligatory component of the life cycle of S. mansoni, to identify their roles in the pathogenesis of schistosomiasis, and to highlight the importance of such studies in identifying and developing drugs and vaccines with high therapeutic efficacy.
id SBMT-1_1c81ceb7a2c5d8e406ea592acca91cc4
oai_identifier_str oai:scielo:S0037-86822022000100204
network_acronym_str SBMT-1
network_name_str Revista da Sociedade Brasileira de Medicina Tropical
repository_id_str
spelling Clustered Regularly Interspaced Short Palindromic Repeats/ CRISPR associated protein 9-mediated editing of Schistosoma mansoni genes: Identifying genes for immunologically potent drug and vaccine developmentCRISPR/Cas9-mediated gene editingSchistosoma mansoni genesDisease pathogenesisDrug and vaccine developmentABSTRACT Schistosomiasis is a neglected acute and chronic tropical disease caused by intestinal (Schistosoma mansoni and Schistosoma japonicum) and urogenital (Schistosoma haematobium) helminth parasites (blood flukes or digenetic trematodes). It afflicts over 250 million people worldwide, the majority of whom reside in impoverished tropical and subtropical regions in sub-Saharan Africa. Schistosomiasis is the second most common devastating parasitic disease in the world after malaria and causes over 200,000 deaths annually. Currently, there is no effective and approved vaccine available for human use, and treatment strongly relies on praziquantel drug therapy, which is ineffective in killing immature larval schistosomula stages and eggs already lodged in the tissues. The Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9 (CRISPR/Cas9)-mediated gene editing tool is used to deactivate a gene of interest to scrutinize its role in health and disease, and to identify genes for vaccine and drug targeting. The present review aims to summarize the major findings from the current literature reporting the usage of CRISPR/Cas9-mediated gene editing to inactivate genes in S. mansoni (acetylcholinesterase (AChE), T2 ribonuclease omega-1 (ω1), sulfotransferase oxamniquine resistance protein (SULT-OR), and α-N-acetylgalactosaminidase (SmNAGAL)), and freshwater gastropod snails, Biomphalaria glabrata (allograft inflammatory factor (BgAIF)), an obligatory component of the life cycle of S. mansoni, to identify their roles in the pathogenesis of schistosomiasis, and to highlight the importance of such studies in identifying and developing drugs and vaccines with high therapeutic efficacy.Sociedade Brasileira de Medicina Tropical - SBMT2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0037-86822022000100204Revista da Sociedade Brasileira de Medicina Tropical v.55 2022reponame:Revista da Sociedade Brasileira de Medicina Tropicalinstname:Sociedade Brasileira de Medicina Tropical (SBMT)instacron:SBMT10.1590/0037-8682-0131-2022info:eu-repo/semantics/openAccessNaidoo,PragalathanMkhize-Kwitshana,Zilungile Lynetteeng2022-08-08T00:00:00Zoai:scielo:S0037-86822022000100204Revistahttps://www.sbmt.org.br/portal/revista/ONGhttps://old.scielo.br/oai/scielo-oai.php||dalmo@rsbmt.uftm.edu.br|| rsbmt@rsbmt.uftm.edu.br1678-98490037-8682opendoar:2022-08-08T00:00Revista da Sociedade Brasileira de Medicina Tropical - Sociedade Brasileira de Medicina Tropical (SBMT)false
dc.title.none.fl_str_mv Clustered Regularly Interspaced Short Palindromic Repeats/ CRISPR associated protein 9-mediated editing of Schistosoma mansoni genes: Identifying genes for immunologically potent drug and vaccine development
title Clustered Regularly Interspaced Short Palindromic Repeats/ CRISPR associated protein 9-mediated editing of Schistosoma mansoni genes: Identifying genes for immunologically potent drug and vaccine development
spellingShingle Clustered Regularly Interspaced Short Palindromic Repeats/ CRISPR associated protein 9-mediated editing of Schistosoma mansoni genes: Identifying genes for immunologically potent drug and vaccine development
Naidoo,Pragalathan
CRISPR/Cas9-mediated gene editing
Schistosoma mansoni genes
Disease pathogenesis
Drug and vaccine development
title_short Clustered Regularly Interspaced Short Palindromic Repeats/ CRISPR associated protein 9-mediated editing of Schistosoma mansoni genes: Identifying genes for immunologically potent drug and vaccine development
title_full Clustered Regularly Interspaced Short Palindromic Repeats/ CRISPR associated protein 9-mediated editing of Schistosoma mansoni genes: Identifying genes for immunologically potent drug and vaccine development
title_fullStr Clustered Regularly Interspaced Short Palindromic Repeats/ CRISPR associated protein 9-mediated editing of Schistosoma mansoni genes: Identifying genes for immunologically potent drug and vaccine development
title_full_unstemmed Clustered Regularly Interspaced Short Palindromic Repeats/ CRISPR associated protein 9-mediated editing of Schistosoma mansoni genes: Identifying genes for immunologically potent drug and vaccine development
title_sort Clustered Regularly Interspaced Short Palindromic Repeats/ CRISPR associated protein 9-mediated editing of Schistosoma mansoni genes: Identifying genes for immunologically potent drug and vaccine development
author Naidoo,Pragalathan
author_facet Naidoo,Pragalathan
Mkhize-Kwitshana,Zilungile Lynette
author_role author
author2 Mkhize-Kwitshana,Zilungile Lynette
author2_role author
dc.contributor.author.fl_str_mv Naidoo,Pragalathan
Mkhize-Kwitshana,Zilungile Lynette
dc.subject.por.fl_str_mv CRISPR/Cas9-mediated gene editing
Schistosoma mansoni genes
Disease pathogenesis
Drug and vaccine development
topic CRISPR/Cas9-mediated gene editing
Schistosoma mansoni genes
Disease pathogenesis
Drug and vaccine development
description ABSTRACT Schistosomiasis is a neglected acute and chronic tropical disease caused by intestinal (Schistosoma mansoni and Schistosoma japonicum) and urogenital (Schistosoma haematobium) helminth parasites (blood flukes or digenetic trematodes). It afflicts over 250 million people worldwide, the majority of whom reside in impoverished tropical and subtropical regions in sub-Saharan Africa. Schistosomiasis is the second most common devastating parasitic disease in the world after malaria and causes over 200,000 deaths annually. Currently, there is no effective and approved vaccine available for human use, and treatment strongly relies on praziquantel drug therapy, which is ineffective in killing immature larval schistosomula stages and eggs already lodged in the tissues. The Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9 (CRISPR/Cas9)-mediated gene editing tool is used to deactivate a gene of interest to scrutinize its role in health and disease, and to identify genes for vaccine and drug targeting. The present review aims to summarize the major findings from the current literature reporting the usage of CRISPR/Cas9-mediated gene editing to inactivate genes in S. mansoni (acetylcholinesterase (AChE), T2 ribonuclease omega-1 (ω1), sulfotransferase oxamniquine resistance protein (SULT-OR), and α-N-acetylgalactosaminidase (SmNAGAL)), and freshwater gastropod snails, Biomphalaria glabrata (allograft inflammatory factor (BgAIF)), an obligatory component of the life cycle of S. mansoni, to identify their roles in the pathogenesis of schistosomiasis, and to highlight the importance of such studies in identifying and developing drugs and vaccines with high therapeutic efficacy.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0037-86822022000100204
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0037-86822022000100204
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0037-8682-0131-2022
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Medicina Tropical - SBMT
publisher.none.fl_str_mv Sociedade Brasileira de Medicina Tropical - SBMT
dc.source.none.fl_str_mv Revista da Sociedade Brasileira de Medicina Tropical v.55 2022
reponame:Revista da Sociedade Brasileira de Medicina Tropical
instname:Sociedade Brasileira de Medicina Tropical (SBMT)
instacron:SBMT
instname_str Sociedade Brasileira de Medicina Tropical (SBMT)
instacron_str SBMT
institution SBMT
reponame_str Revista da Sociedade Brasileira de Medicina Tropical
collection Revista da Sociedade Brasileira de Medicina Tropical
repository.name.fl_str_mv Revista da Sociedade Brasileira de Medicina Tropical - Sociedade Brasileira de Medicina Tropical (SBMT)
repository.mail.fl_str_mv ||dalmo@rsbmt.uftm.edu.br|| rsbmt@rsbmt.uftm.edu.br
_version_ 1752122162999721984