A SARIMA forecasting model to predict the number of cases of dengue in Campinas, State of São Paulo, Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista da Sociedade Brasileira de Medicina Tropical |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0037-86822011000400007 |
Resumo: | INTRODUCTION: Forecasting dengue cases in a population by using time-series models can provide useful information that can be used to facilitate the planning of public health interventions. The objective of this article was to develop a forecasting model for dengue incidence in Campinas, southeast Brazil, considering the Box-Jenkins modeling approach. METHODS: The forecasting model for dengue incidence was performed with R software using the seasonal autoregressive integrated moving average (SARIMA) model. We fitted a model based on the reported monthly incidence of dengue from 1998 to 2008, and we validated the model using the data collected between January and December of 2009. RESULTS: SARIMA (2,1,2) (1,1,1)12 was the model with the best fit for data. This model indicated that the number of dengue cases in a given month can be estimated by the number of dengue cases occurring one, two and twelve months prior. The predicted values for 2009 are relatively close to the observed values. CONCLUSIONS: The results of this article indicate that SARIMA models are useful tools for monitoring dengue incidence. We also observe that the SARIMA model is capable of representing with relative precision the number of cases in a next year. |
id |
SBMT-1_c42882eed5e82cc31a961f9da7d1d4d9 |
---|---|
oai_identifier_str |
oai:scielo:S0037-86822011000400007 |
network_acronym_str |
SBMT-1 |
network_name_str |
Revista da Sociedade Brasileira de Medicina Tropical |
repository_id_str |
|
spelling |
A SARIMA forecasting model to predict the number of cases of dengue in Campinas, State of São Paulo, BrazilDengueSARIMATime series analysisStatisticsINTRODUCTION: Forecasting dengue cases in a population by using time-series models can provide useful information that can be used to facilitate the planning of public health interventions. The objective of this article was to develop a forecasting model for dengue incidence in Campinas, southeast Brazil, considering the Box-Jenkins modeling approach. METHODS: The forecasting model for dengue incidence was performed with R software using the seasonal autoregressive integrated moving average (SARIMA) model. We fitted a model based on the reported monthly incidence of dengue from 1998 to 2008, and we validated the model using the data collected between January and December of 2009. RESULTS: SARIMA (2,1,2) (1,1,1)12 was the model with the best fit for data. This model indicated that the number of dengue cases in a given month can be estimated by the number of dengue cases occurring one, two and twelve months prior. The predicted values for 2009 are relatively close to the observed values. CONCLUSIONS: The results of this article indicate that SARIMA models are useful tools for monitoring dengue incidence. We also observe that the SARIMA model is capable of representing with relative precision the number of cases in a next year.Sociedade Brasileira de Medicina Tropical - SBMT2011-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0037-86822011000400007Revista da Sociedade Brasileira de Medicina Tropical v.44 n.4 2011reponame:Revista da Sociedade Brasileira de Medicina Tropicalinstname:Sociedade Brasileira de Medicina Tropical (SBMT)instacron:SBMT10.1590/S0037-86822011000400007info:eu-repo/semantics/openAccessMartinez,Edson ZangiacomiSilva,Elisângela Aparecida Soares daFabbro,Amaury Lelis Daleng2016-09-30T00:00:00Zoai:scielo:S0037-86822011000400007Revistahttps://www.sbmt.org.br/portal/revista/ONGhttps://old.scielo.br/oai/scielo-oai.php||dalmo@rsbmt.uftm.edu.br|| rsbmt@rsbmt.uftm.edu.br1678-98490037-8682opendoar:2016-09-30T00:00Revista da Sociedade Brasileira de Medicina Tropical - Sociedade Brasileira de Medicina Tropical (SBMT)false |
dc.title.none.fl_str_mv |
A SARIMA forecasting model to predict the number of cases of dengue in Campinas, State of São Paulo, Brazil |
title |
A SARIMA forecasting model to predict the number of cases of dengue in Campinas, State of São Paulo, Brazil |
spellingShingle |
A SARIMA forecasting model to predict the number of cases of dengue in Campinas, State of São Paulo, Brazil Martinez,Edson Zangiacomi Dengue SARIMA Time series analysis Statistics |
title_short |
A SARIMA forecasting model to predict the number of cases of dengue in Campinas, State of São Paulo, Brazil |
title_full |
A SARIMA forecasting model to predict the number of cases of dengue in Campinas, State of São Paulo, Brazil |
title_fullStr |
A SARIMA forecasting model to predict the number of cases of dengue in Campinas, State of São Paulo, Brazil |
title_full_unstemmed |
A SARIMA forecasting model to predict the number of cases of dengue in Campinas, State of São Paulo, Brazil |
title_sort |
A SARIMA forecasting model to predict the number of cases of dengue in Campinas, State of São Paulo, Brazil |
author |
Martinez,Edson Zangiacomi |
author_facet |
Martinez,Edson Zangiacomi Silva,Elisângela Aparecida Soares da Fabbro,Amaury Lelis Dal |
author_role |
author |
author2 |
Silva,Elisângela Aparecida Soares da Fabbro,Amaury Lelis Dal |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Martinez,Edson Zangiacomi Silva,Elisângela Aparecida Soares da Fabbro,Amaury Lelis Dal |
dc.subject.por.fl_str_mv |
Dengue SARIMA Time series analysis Statistics |
topic |
Dengue SARIMA Time series analysis Statistics |
description |
INTRODUCTION: Forecasting dengue cases in a population by using time-series models can provide useful information that can be used to facilitate the planning of public health interventions. The objective of this article was to develop a forecasting model for dengue incidence in Campinas, southeast Brazil, considering the Box-Jenkins modeling approach. METHODS: The forecasting model for dengue incidence was performed with R software using the seasonal autoregressive integrated moving average (SARIMA) model. We fitted a model based on the reported monthly incidence of dengue from 1998 to 2008, and we validated the model using the data collected between January and December of 2009. RESULTS: SARIMA (2,1,2) (1,1,1)12 was the model with the best fit for data. This model indicated that the number of dengue cases in a given month can be estimated by the number of dengue cases occurring one, two and twelve months prior. The predicted values for 2009 are relatively close to the observed values. CONCLUSIONS: The results of this article indicate that SARIMA models are useful tools for monitoring dengue incidence. We also observe that the SARIMA model is capable of representing with relative precision the number of cases in a next year. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0037-86822011000400007 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0037-86822011000400007 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0037-86822011000400007 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Medicina Tropical - SBMT |
publisher.none.fl_str_mv |
Sociedade Brasileira de Medicina Tropical - SBMT |
dc.source.none.fl_str_mv |
Revista da Sociedade Brasileira de Medicina Tropical v.44 n.4 2011 reponame:Revista da Sociedade Brasileira de Medicina Tropical instname:Sociedade Brasileira de Medicina Tropical (SBMT) instacron:SBMT |
instname_str |
Sociedade Brasileira de Medicina Tropical (SBMT) |
instacron_str |
SBMT |
institution |
SBMT |
reponame_str |
Revista da Sociedade Brasileira de Medicina Tropical |
collection |
Revista da Sociedade Brasileira de Medicina Tropical |
repository.name.fl_str_mv |
Revista da Sociedade Brasileira de Medicina Tropical - Sociedade Brasileira de Medicina Tropical (SBMT) |
repository.mail.fl_str_mv |
||dalmo@rsbmt.uftm.edu.br|| rsbmt@rsbmt.uftm.edu.br |
_version_ |
1752122156718751744 |