Energy Required for Fracture in Synthetic Proximal Femoral Models After Synthesis Material Removal: a Biomechanical Study Using Cannulated Screws, Dynamic Hip Screws, and Proximal Femoral Nails
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Ortopedia (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-36162021000200251 |
Resumo: | Abstract Objective The present study aims to identify the energy required for synthetic proximal femoral fracture after removal of three implant types: cannulated screws, dynamic hip screws (DHS), and proximal femoral nail (PFN). Methods Twenty-five synthetic proximal femur bones were used: 10 were kept intact as the control group (CG), 5 were submitted to the placement and removal of 3 cannulated screws in an inverted triangle configuration (CSG), 5 were submitted to the placement and removal of a dynamic compression screw (DHSG), and 5 were submitted to the placement and removal of a proximal femur nail (PFNG). All samples were biomechanically analyzed simulating a fall on the greater trochanter using a servo-hydraulic machine to determine the energy (in Joules [J]) required for fracture. Results All samples presented basicervical fractures. The energy required for fracture was 7.1 J, 6.6 J, 6 J, and 6.7 J for the CG, CSG, DHSG and PFNG, respectively. There was no statistically significant difference (considering a 95% confidence interval) in energy among the study groups (p = 0.34). Conclusion There was no statistically significant difference in the energy required to cause a synthetic proximal femoral fracture after removing all three implant types and simulating a fall over the greater trochanter. |
id |
SBOT-2_a265d70844215310ed97b39d7c10be18 |
---|---|
oai_identifier_str |
oai:scielo:S0102-36162021000200251 |
network_acronym_str |
SBOT-2 |
network_name_str |
Revista Brasileira de Ortopedia (Online) |
repository_id_str |
|
spelling |
Energy Required for Fracture in Synthetic Proximal Femoral Models After Synthesis Material Removal: a Biomechanical Study Using Cannulated Screws, Dynamic Hip Screws, and Proximal Femoral Nailshiphip fracturesfracture fixationdevice removalAbstract Objective The present study aims to identify the energy required for synthetic proximal femoral fracture after removal of three implant types: cannulated screws, dynamic hip screws (DHS), and proximal femoral nail (PFN). Methods Twenty-five synthetic proximal femur bones were used: 10 were kept intact as the control group (CG), 5 were submitted to the placement and removal of 3 cannulated screws in an inverted triangle configuration (CSG), 5 were submitted to the placement and removal of a dynamic compression screw (DHSG), and 5 were submitted to the placement and removal of a proximal femur nail (PFNG). All samples were biomechanically analyzed simulating a fall on the greater trochanter using a servo-hydraulic machine to determine the energy (in Joules [J]) required for fracture. Results All samples presented basicervical fractures. The energy required for fracture was 7.1 J, 6.6 J, 6 J, and 6.7 J for the CG, CSG, DHSG and PFNG, respectively. There was no statistically significant difference (considering a 95% confidence interval) in energy among the study groups (p = 0.34). Conclusion There was no statistically significant difference in the energy required to cause a synthetic proximal femoral fracture after removing all three implant types and simulating a fall over the greater trochanter.Sociedade Brasileira de Ortopedia e Traumatologia2021-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-36162021000200251Revista Brasileira de Ortopedia v.56 n.2 2021reponame:Revista Brasileira de Ortopedia (Online)instname:Sociedade Brasileira de Ortopedia e Traumatologia (SBOT)instacron:SBOT10.1055/s-0040-1721832info:eu-repo/semantics/openAccessFreitas,AndersonSilva,Landwehrle de Lucena daCosta,Renilton RodriguesRamos,Lucas SacramentoGiordano,Marcos NorbertoGonçalves,Henrique Mansureng2021-05-31T00:00:00Zoai:scielo:S0102-36162021000200251Revistahttp://www.rbo.org.br/https://old.scielo.br/oai/scielo-oai.php||rbo@sbot.org.br1982-43780102-3616opendoar:2021-05-31T00:00Revista Brasileira de Ortopedia (Online) - Sociedade Brasileira de Ortopedia e Traumatologia (SBOT)false |
dc.title.none.fl_str_mv |
Energy Required for Fracture in Synthetic Proximal Femoral Models After Synthesis Material Removal: a Biomechanical Study Using Cannulated Screws, Dynamic Hip Screws, and Proximal Femoral Nails |
title |
Energy Required for Fracture in Synthetic Proximal Femoral Models After Synthesis Material Removal: a Biomechanical Study Using Cannulated Screws, Dynamic Hip Screws, and Proximal Femoral Nails |
spellingShingle |
Energy Required for Fracture in Synthetic Proximal Femoral Models After Synthesis Material Removal: a Biomechanical Study Using Cannulated Screws, Dynamic Hip Screws, and Proximal Femoral Nails Freitas,Anderson hip hip fractures fracture fixation device removal |
title_short |
Energy Required for Fracture in Synthetic Proximal Femoral Models After Synthesis Material Removal: a Biomechanical Study Using Cannulated Screws, Dynamic Hip Screws, and Proximal Femoral Nails |
title_full |
Energy Required for Fracture in Synthetic Proximal Femoral Models After Synthesis Material Removal: a Biomechanical Study Using Cannulated Screws, Dynamic Hip Screws, and Proximal Femoral Nails |
title_fullStr |
Energy Required for Fracture in Synthetic Proximal Femoral Models After Synthesis Material Removal: a Biomechanical Study Using Cannulated Screws, Dynamic Hip Screws, and Proximal Femoral Nails |
title_full_unstemmed |
Energy Required for Fracture in Synthetic Proximal Femoral Models After Synthesis Material Removal: a Biomechanical Study Using Cannulated Screws, Dynamic Hip Screws, and Proximal Femoral Nails |
title_sort |
Energy Required for Fracture in Synthetic Proximal Femoral Models After Synthesis Material Removal: a Biomechanical Study Using Cannulated Screws, Dynamic Hip Screws, and Proximal Femoral Nails |
author |
Freitas,Anderson |
author_facet |
Freitas,Anderson Silva,Landwehrle de Lucena da Costa,Renilton Rodrigues Ramos,Lucas Sacramento Giordano,Marcos Norberto Gonçalves,Henrique Mansur |
author_role |
author |
author2 |
Silva,Landwehrle de Lucena da Costa,Renilton Rodrigues Ramos,Lucas Sacramento Giordano,Marcos Norberto Gonçalves,Henrique Mansur |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Freitas,Anderson Silva,Landwehrle de Lucena da Costa,Renilton Rodrigues Ramos,Lucas Sacramento Giordano,Marcos Norberto Gonçalves,Henrique Mansur |
dc.subject.por.fl_str_mv |
hip hip fractures fracture fixation device removal |
topic |
hip hip fractures fracture fixation device removal |
description |
Abstract Objective The present study aims to identify the energy required for synthetic proximal femoral fracture after removal of three implant types: cannulated screws, dynamic hip screws (DHS), and proximal femoral nail (PFN). Methods Twenty-five synthetic proximal femur bones were used: 10 were kept intact as the control group (CG), 5 were submitted to the placement and removal of 3 cannulated screws in an inverted triangle configuration (CSG), 5 were submitted to the placement and removal of a dynamic compression screw (DHSG), and 5 were submitted to the placement and removal of a proximal femur nail (PFNG). All samples were biomechanically analyzed simulating a fall on the greater trochanter using a servo-hydraulic machine to determine the energy (in Joules [J]) required for fracture. Results All samples presented basicervical fractures. The energy required for fracture was 7.1 J, 6.6 J, 6 J, and 6.7 J for the CG, CSG, DHSG and PFNG, respectively. There was no statistically significant difference (considering a 95% confidence interval) in energy among the study groups (p = 0.34). Conclusion There was no statistically significant difference in the energy required to cause a synthetic proximal femoral fracture after removing all three implant types and simulating a fall over the greater trochanter. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-36162021000200251 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-36162021000200251 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1055/s-0040-1721832 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Ortopedia e Traumatologia |
publisher.none.fl_str_mv |
Sociedade Brasileira de Ortopedia e Traumatologia |
dc.source.none.fl_str_mv |
Revista Brasileira de Ortopedia v.56 n.2 2021 reponame:Revista Brasileira de Ortopedia (Online) instname:Sociedade Brasileira de Ortopedia e Traumatologia (SBOT) instacron:SBOT |
instname_str |
Sociedade Brasileira de Ortopedia e Traumatologia (SBOT) |
instacron_str |
SBOT |
institution |
SBOT |
reponame_str |
Revista Brasileira de Ortopedia (Online) |
collection |
Revista Brasileira de Ortopedia (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Ortopedia (Online) - Sociedade Brasileira de Ortopedia e Traumatologia (SBOT) |
repository.mail.fl_str_mv |
||rbo@sbot.org.br |
_version_ |
1752122362861453312 |