Molybdenum (VI) binded to humic and nitrohumic acid models in aqueous solutions: phthalic, 3- and 4-nitrophthalic acids, catechol and 4-nitrocathecol, part 1

Detalhes bibliográficos
Autor(a) principal: Mercê,Ana Lucia R.
Data de Publicação: 2005
Outros Autores: Greboge,Cristiane, Mendes,Giovani, Mangrich,Antonio S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Chemical Society (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532005000100006
Resumo: Many mathematical models have been tested in the literature in the search of how humic acids (HA) from many natural sources complex to metal ions. HA are composed of natural degradation sources of C, N, P and S, bearing hydroxyl and carboxyl aromatic units in their inner structure. The presence of metal ions binded to these basic sites promotes fertility to the soil as well as can hold metal ions to be slowly released as the mineralization of the soil occurs. Nitrohumic substances are a laboratory artifact with higher N content then humic acids with an electron withdrawing group - NO2. However they still bear the main HA constituent chemical groups such as salycilate, catecholate and phthalate derivatives, all prone to bind to metal ions depending on the chemical conditions of the environment. This work intended to study the complexing behaviour of some HA models having very different Lewis basic binding sites in the presence of molybdenum (VI) ions, in aqueous systems, with varying pH values using some analytical tools. The formation constants of phthalic acid, 3- and 4-nitrophthalic acids, catechol and 4-nitrocatechol with Mo(VI) as well as the speciation of the complex species according to varying pH values were determined. Potentiometric and cyclic voltammetric titrations were employed to calculate the formation constants and to monitor the formation and decomposition of some complexed species. The results showed that although there is complexation between phthalic derived acids and molybdenum, the speciation favours it only until pH 6.0 at the best. On the other hand, salicylic and catechol derived models showed existence of complexation until basic pH values, allowing a compromising complexation pH range when humic and nitrohumic substances are involved.
id SBQ-2_26a86ff0b1c0b178441846bb75eb4ddf
oai_identifier_str oai:scielo:S0103-50532005000100006
network_acronym_str SBQ-2
network_name_str Journal of the Brazilian Chemical Society (Online)
repository_id_str
spelling Molybdenum (VI) binded to humic and nitrohumic acid models in aqueous solutions: phthalic, 3- and 4-nitrophthalic acids, catechol and 4-nitrocathecol, part 1humic acid modelsmolybdenum (VI) complexespotentiometric titrationscyclic voltammetrystability constantsMany mathematical models have been tested in the literature in the search of how humic acids (HA) from many natural sources complex to metal ions. HA are composed of natural degradation sources of C, N, P and S, bearing hydroxyl and carboxyl aromatic units in their inner structure. The presence of metal ions binded to these basic sites promotes fertility to the soil as well as can hold metal ions to be slowly released as the mineralization of the soil occurs. Nitrohumic substances are a laboratory artifact with higher N content then humic acids with an electron withdrawing group - NO2. However they still bear the main HA constituent chemical groups such as salycilate, catecholate and phthalate derivatives, all prone to bind to metal ions depending on the chemical conditions of the environment. This work intended to study the complexing behaviour of some HA models having very different Lewis basic binding sites in the presence of molybdenum (VI) ions, in aqueous systems, with varying pH values using some analytical tools. The formation constants of phthalic acid, 3- and 4-nitrophthalic acids, catechol and 4-nitrocatechol with Mo(VI) as well as the speciation of the complex species according to varying pH values were determined. Potentiometric and cyclic voltammetric titrations were employed to calculate the formation constants and to monitor the formation and decomposition of some complexed species. The results showed that although there is complexation between phthalic derived acids and molybdenum, the speciation favours it only until pH 6.0 at the best. On the other hand, salicylic and catechol derived models showed existence of complexation until basic pH values, allowing a compromising complexation pH range when humic and nitrohumic substances are involved.Sociedade Brasileira de Química2005-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532005000100006Journal of the Brazilian Chemical Society v.16 n.1 2005reponame:Journal of the Brazilian Chemical Society (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.1590/S0103-50532005000100006info:eu-repo/semantics/openAccessMercê,Ana Lucia R.Greboge,CristianeMendes,GiovaniMangrich,Antonio S.eng2005-03-22T00:00:00Zoai:scielo:S0103-50532005000100006Revistahttp://jbcs.sbq.org.brONGhttps://old.scielo.br/oai/scielo-oai.php||office@jbcs.sbq.org.br1678-47900103-5053opendoar:2005-03-22T00:00Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)false
dc.title.none.fl_str_mv Molybdenum (VI) binded to humic and nitrohumic acid models in aqueous solutions: phthalic, 3- and 4-nitrophthalic acids, catechol and 4-nitrocathecol, part 1
title Molybdenum (VI) binded to humic and nitrohumic acid models in aqueous solutions: phthalic, 3- and 4-nitrophthalic acids, catechol and 4-nitrocathecol, part 1
spellingShingle Molybdenum (VI) binded to humic and nitrohumic acid models in aqueous solutions: phthalic, 3- and 4-nitrophthalic acids, catechol and 4-nitrocathecol, part 1
Mercê,Ana Lucia R.
humic acid models
molybdenum (VI) complexes
potentiometric titrations
cyclic voltammetry
stability constants
title_short Molybdenum (VI) binded to humic and nitrohumic acid models in aqueous solutions: phthalic, 3- and 4-nitrophthalic acids, catechol and 4-nitrocathecol, part 1
title_full Molybdenum (VI) binded to humic and nitrohumic acid models in aqueous solutions: phthalic, 3- and 4-nitrophthalic acids, catechol and 4-nitrocathecol, part 1
title_fullStr Molybdenum (VI) binded to humic and nitrohumic acid models in aqueous solutions: phthalic, 3- and 4-nitrophthalic acids, catechol and 4-nitrocathecol, part 1
title_full_unstemmed Molybdenum (VI) binded to humic and nitrohumic acid models in aqueous solutions: phthalic, 3- and 4-nitrophthalic acids, catechol and 4-nitrocathecol, part 1
title_sort Molybdenum (VI) binded to humic and nitrohumic acid models in aqueous solutions: phthalic, 3- and 4-nitrophthalic acids, catechol and 4-nitrocathecol, part 1
author Mercê,Ana Lucia R.
author_facet Mercê,Ana Lucia R.
Greboge,Cristiane
Mendes,Giovani
Mangrich,Antonio S.
author_role author
author2 Greboge,Cristiane
Mendes,Giovani
Mangrich,Antonio S.
author2_role author
author
author
dc.contributor.author.fl_str_mv Mercê,Ana Lucia R.
Greboge,Cristiane
Mendes,Giovani
Mangrich,Antonio S.
dc.subject.por.fl_str_mv humic acid models
molybdenum (VI) complexes
potentiometric titrations
cyclic voltammetry
stability constants
topic humic acid models
molybdenum (VI) complexes
potentiometric titrations
cyclic voltammetry
stability constants
description Many mathematical models have been tested in the literature in the search of how humic acids (HA) from many natural sources complex to metal ions. HA are composed of natural degradation sources of C, N, P and S, bearing hydroxyl and carboxyl aromatic units in their inner structure. The presence of metal ions binded to these basic sites promotes fertility to the soil as well as can hold metal ions to be slowly released as the mineralization of the soil occurs. Nitrohumic substances are a laboratory artifact with higher N content then humic acids with an electron withdrawing group - NO2. However they still bear the main HA constituent chemical groups such as salycilate, catecholate and phthalate derivatives, all prone to bind to metal ions depending on the chemical conditions of the environment. This work intended to study the complexing behaviour of some HA models having very different Lewis basic binding sites in the presence of molybdenum (VI) ions, in aqueous systems, with varying pH values using some analytical tools. The formation constants of phthalic acid, 3- and 4-nitrophthalic acids, catechol and 4-nitrocatechol with Mo(VI) as well as the speciation of the complex species according to varying pH values were determined. Potentiometric and cyclic voltammetric titrations were employed to calculate the formation constants and to monitor the formation and decomposition of some complexed species. The results showed that although there is complexation between phthalic derived acids and molybdenum, the speciation favours it only until pH 6.0 at the best. On the other hand, salicylic and catechol derived models showed existence of complexation until basic pH values, allowing a compromising complexation pH range when humic and nitrohumic substances are involved.
publishDate 2005
dc.date.none.fl_str_mv 2005-02-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532005000100006
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532005000100006
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-50532005000100006
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Química
publisher.none.fl_str_mv Sociedade Brasileira de Química
dc.source.none.fl_str_mv Journal of the Brazilian Chemical Society v.16 n.1 2005
reponame:Journal of the Brazilian Chemical Society (Online)
instname:Sociedade Brasileira de Química (SBQ)
instacron:SBQ
instname_str Sociedade Brasileira de Química (SBQ)
instacron_str SBQ
institution SBQ
reponame_str Journal of the Brazilian Chemical Society (Online)
collection Journal of the Brazilian Chemical Society (Online)
repository.name.fl_str_mv Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)
repository.mail.fl_str_mv ||office@jbcs.sbq.org.br
_version_ 1750318166123216896