Molybdenum (VI) binded to humic and nitrohumic acid models in aqueous solutions: phthalic, 3- and 4-nitrophthalic acids, catechol and 4-nitrocathecol, part 1
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of the Brazilian Chemical Society (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532005000100006 |
Resumo: | Many mathematical models have been tested in the literature in the search of how humic acids (HA) from many natural sources complex to metal ions. HA are composed of natural degradation sources of C, N, P and S, bearing hydroxyl and carboxyl aromatic units in their inner structure. The presence of metal ions binded to these basic sites promotes fertility to the soil as well as can hold metal ions to be slowly released as the mineralization of the soil occurs. Nitrohumic substances are a laboratory artifact with higher N content then humic acids with an electron withdrawing group - NO2. However they still bear the main HA constituent chemical groups such as salycilate, catecholate and phthalate derivatives, all prone to bind to metal ions depending on the chemical conditions of the environment. This work intended to study the complexing behaviour of some HA models having very different Lewis basic binding sites in the presence of molybdenum (VI) ions, in aqueous systems, with varying pH values using some analytical tools. The formation constants of phthalic acid, 3- and 4-nitrophthalic acids, catechol and 4-nitrocatechol with Mo(VI) as well as the speciation of the complex species according to varying pH values were determined. Potentiometric and cyclic voltammetric titrations were employed to calculate the formation constants and to monitor the formation and decomposition of some complexed species. The results showed that although there is complexation between phthalic derived acids and molybdenum, the speciation favours it only until pH 6.0 at the best. On the other hand, salicylic and catechol derived models showed existence of complexation until basic pH values, allowing a compromising complexation pH range when humic and nitrohumic substances are involved. |
id |
SBQ-2_26a86ff0b1c0b178441846bb75eb4ddf |
---|---|
oai_identifier_str |
oai:scielo:S0103-50532005000100006 |
network_acronym_str |
SBQ-2 |
network_name_str |
Journal of the Brazilian Chemical Society (Online) |
repository_id_str |
|
spelling |
Molybdenum (VI) binded to humic and nitrohumic acid models in aqueous solutions: phthalic, 3- and 4-nitrophthalic acids, catechol and 4-nitrocathecol, part 1humic acid modelsmolybdenum (VI) complexespotentiometric titrationscyclic voltammetrystability constantsMany mathematical models have been tested in the literature in the search of how humic acids (HA) from many natural sources complex to metal ions. HA are composed of natural degradation sources of C, N, P and S, bearing hydroxyl and carboxyl aromatic units in their inner structure. The presence of metal ions binded to these basic sites promotes fertility to the soil as well as can hold metal ions to be slowly released as the mineralization of the soil occurs. Nitrohumic substances are a laboratory artifact with higher N content then humic acids with an electron withdrawing group - NO2. However they still bear the main HA constituent chemical groups such as salycilate, catecholate and phthalate derivatives, all prone to bind to metal ions depending on the chemical conditions of the environment. This work intended to study the complexing behaviour of some HA models having very different Lewis basic binding sites in the presence of molybdenum (VI) ions, in aqueous systems, with varying pH values using some analytical tools. The formation constants of phthalic acid, 3- and 4-nitrophthalic acids, catechol and 4-nitrocatechol with Mo(VI) as well as the speciation of the complex species according to varying pH values were determined. Potentiometric and cyclic voltammetric titrations were employed to calculate the formation constants and to monitor the formation and decomposition of some complexed species. The results showed that although there is complexation between phthalic derived acids and molybdenum, the speciation favours it only until pH 6.0 at the best. On the other hand, salicylic and catechol derived models showed existence of complexation until basic pH values, allowing a compromising complexation pH range when humic and nitrohumic substances are involved.Sociedade Brasileira de Química2005-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532005000100006Journal of the Brazilian Chemical Society v.16 n.1 2005reponame:Journal of the Brazilian Chemical Society (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.1590/S0103-50532005000100006info:eu-repo/semantics/openAccessMercê,Ana Lucia R.Greboge,CristianeMendes,GiovaniMangrich,Antonio S.eng2005-03-22T00:00:00Zoai:scielo:S0103-50532005000100006Revistahttp://jbcs.sbq.org.brONGhttps://old.scielo.br/oai/scielo-oai.php||office@jbcs.sbq.org.br1678-47900103-5053opendoar:2005-03-22T00:00Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)false |
dc.title.none.fl_str_mv |
Molybdenum (VI) binded to humic and nitrohumic acid models in aqueous solutions: phthalic, 3- and 4-nitrophthalic acids, catechol and 4-nitrocathecol, part 1 |
title |
Molybdenum (VI) binded to humic and nitrohumic acid models in aqueous solutions: phthalic, 3- and 4-nitrophthalic acids, catechol and 4-nitrocathecol, part 1 |
spellingShingle |
Molybdenum (VI) binded to humic and nitrohumic acid models in aqueous solutions: phthalic, 3- and 4-nitrophthalic acids, catechol and 4-nitrocathecol, part 1 Mercê,Ana Lucia R. humic acid models molybdenum (VI) complexes potentiometric titrations cyclic voltammetry stability constants |
title_short |
Molybdenum (VI) binded to humic and nitrohumic acid models in aqueous solutions: phthalic, 3- and 4-nitrophthalic acids, catechol and 4-nitrocathecol, part 1 |
title_full |
Molybdenum (VI) binded to humic and nitrohumic acid models in aqueous solutions: phthalic, 3- and 4-nitrophthalic acids, catechol and 4-nitrocathecol, part 1 |
title_fullStr |
Molybdenum (VI) binded to humic and nitrohumic acid models in aqueous solutions: phthalic, 3- and 4-nitrophthalic acids, catechol and 4-nitrocathecol, part 1 |
title_full_unstemmed |
Molybdenum (VI) binded to humic and nitrohumic acid models in aqueous solutions: phthalic, 3- and 4-nitrophthalic acids, catechol and 4-nitrocathecol, part 1 |
title_sort |
Molybdenum (VI) binded to humic and nitrohumic acid models in aqueous solutions: phthalic, 3- and 4-nitrophthalic acids, catechol and 4-nitrocathecol, part 1 |
author |
Mercê,Ana Lucia R. |
author_facet |
Mercê,Ana Lucia R. Greboge,Cristiane Mendes,Giovani Mangrich,Antonio S. |
author_role |
author |
author2 |
Greboge,Cristiane Mendes,Giovani Mangrich,Antonio S. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Mercê,Ana Lucia R. Greboge,Cristiane Mendes,Giovani Mangrich,Antonio S. |
dc.subject.por.fl_str_mv |
humic acid models molybdenum (VI) complexes potentiometric titrations cyclic voltammetry stability constants |
topic |
humic acid models molybdenum (VI) complexes potentiometric titrations cyclic voltammetry stability constants |
description |
Many mathematical models have been tested in the literature in the search of how humic acids (HA) from many natural sources complex to metal ions. HA are composed of natural degradation sources of C, N, P and S, bearing hydroxyl and carboxyl aromatic units in their inner structure. The presence of metal ions binded to these basic sites promotes fertility to the soil as well as can hold metal ions to be slowly released as the mineralization of the soil occurs. Nitrohumic substances are a laboratory artifact with higher N content then humic acids with an electron withdrawing group - NO2. However they still bear the main HA constituent chemical groups such as salycilate, catecholate and phthalate derivatives, all prone to bind to metal ions depending on the chemical conditions of the environment. This work intended to study the complexing behaviour of some HA models having very different Lewis basic binding sites in the presence of molybdenum (VI) ions, in aqueous systems, with varying pH values using some analytical tools. The formation constants of phthalic acid, 3- and 4-nitrophthalic acids, catechol and 4-nitrocatechol with Mo(VI) as well as the speciation of the complex species according to varying pH values were determined. Potentiometric and cyclic voltammetric titrations were employed to calculate the formation constants and to monitor the formation and decomposition of some complexed species. The results showed that although there is complexation between phthalic derived acids and molybdenum, the speciation favours it only until pH 6.0 at the best. On the other hand, salicylic and catechol derived models showed existence of complexation until basic pH values, allowing a compromising complexation pH range when humic and nitrohumic substances are involved. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-02-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532005000100006 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532005000100006 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0103-50532005000100006 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
dc.source.none.fl_str_mv |
Journal of the Brazilian Chemical Society v.16 n.1 2005 reponame:Journal of the Brazilian Chemical Society (Online) instname:Sociedade Brasileira de Química (SBQ) instacron:SBQ |
instname_str |
Sociedade Brasileira de Química (SBQ) |
instacron_str |
SBQ |
institution |
SBQ |
reponame_str |
Journal of the Brazilian Chemical Society (Online) |
collection |
Journal of the Brazilian Chemical Society (Online) |
repository.name.fl_str_mv |
Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ) |
repository.mail.fl_str_mv |
||office@jbcs.sbq.org.br |
_version_ |
1750318166123216896 |