Luminescent Terbium Doped Aluminate Particles: Properties and Surface Modification with Asparagine
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of the Brazilian Chemical Society (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532015001202536 |
Resumo: | New luminescent organic-inorganic hybrid particles based on Tb-doped aluminates and asparagine (Asn) surface modifiers were investigated. The Tb3+ doped inorganic core was obtained by spray pyrolysis, at 200 ºC γ-AlOOH (BOE:Tbx%) or at 700 ºC γ-Al2O3 (γTA:Tbx%). The reaction of Asn with boehmite in water disaggregated the sub-micronic boehmite particles to give stable dispersion of surface modified nanoparticles Asn:BOE:Tbx% (x = 1 or 5). Concerning the Asn:γTA:Tbx% system, an Asn film wrapping alumina particles was observed. Photoluminescence spectra exhibited the bands assigned to Tb3+5D4 → 7FJ = 6-3 transitions. A broad absorption band (240 nm) was assigned to the host (aluminate) to ion (Tb3+) energy transfer. Efficient energy transfer was observed when active ions are incorporated in the defect-spinel structure of γTA, whereas it was relatively weak for BOE:Tb where Tb3+ are bonded to the hydroxyls groups at nanocrystals surface. It is noticeable that Asn strengthens the linkage of Tb3+ with the aluminate matrix, enhancing the host to dopant energy transfer. |
id |
SBQ-2_35c0337e24dfb13069eab2f680bf8bed |
---|---|
oai_identifier_str |
oai:scielo:S0103-50532015001202536 |
network_acronym_str |
SBQ-2 |
network_name_str |
Journal of the Brazilian Chemical Society (Online) |
repository_id_str |
|
spelling |
Luminescent Terbium Doped Aluminate Particles: Properties and Surface Modification with Asparaginehybridspray pyrolysisaluminarare earthterbium luminescenceNew luminescent organic-inorganic hybrid particles based on Tb-doped aluminates and asparagine (Asn) surface modifiers were investigated. The Tb3+ doped inorganic core was obtained by spray pyrolysis, at 200 ºC γ-AlOOH (BOE:Tbx%) or at 700 ºC γ-Al2O3 (γTA:Tbx%). The reaction of Asn with boehmite in water disaggregated the sub-micronic boehmite particles to give stable dispersion of surface modified nanoparticles Asn:BOE:Tbx% (x = 1 or 5). Concerning the Asn:γTA:Tbx% system, an Asn film wrapping alumina particles was observed. Photoluminescence spectra exhibited the bands assigned to Tb3+5D4 → 7FJ = 6-3 transitions. A broad absorption band (240 nm) was assigned to the host (aluminate) to ion (Tb3+) energy transfer. Efficient energy transfer was observed when active ions are incorporated in the defect-spinel structure of γTA, whereas it was relatively weak for BOE:Tb where Tb3+ are bonded to the hydroxyls groups at nanocrystals surface. It is noticeable that Asn strengthens the linkage of Tb3+ with the aluminate matrix, enhancing the host to dopant energy transfer.Sociedade Brasileira de Química2015-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532015001202536Journal of the Brazilian Chemical Society v.26 n.12 2015reponame:Journal of the Brazilian Chemical Society (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.5935/0103-5053.20150213info:eu-repo/semantics/openAccessCaiut,José M. A.Messaddeq,YounesDexpert,HervéVerelst,MarcRibeiro,Sidney J. L.Dexpert-Ghys,Jeannetteeng2015-12-16T00:00:00Zoai:scielo:S0103-50532015001202536Revistahttp://jbcs.sbq.org.brONGhttps://old.scielo.br/oai/scielo-oai.php||office@jbcs.sbq.org.br1678-47900103-5053opendoar:2015-12-16T00:00Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)false |
dc.title.none.fl_str_mv |
Luminescent Terbium Doped Aluminate Particles: Properties and Surface Modification with Asparagine |
title |
Luminescent Terbium Doped Aluminate Particles: Properties and Surface Modification with Asparagine |
spellingShingle |
Luminescent Terbium Doped Aluminate Particles: Properties and Surface Modification with Asparagine Caiut,José M. A. hybrid spray pyrolysis alumina rare earth terbium luminescence |
title_short |
Luminescent Terbium Doped Aluminate Particles: Properties and Surface Modification with Asparagine |
title_full |
Luminescent Terbium Doped Aluminate Particles: Properties and Surface Modification with Asparagine |
title_fullStr |
Luminescent Terbium Doped Aluminate Particles: Properties and Surface Modification with Asparagine |
title_full_unstemmed |
Luminescent Terbium Doped Aluminate Particles: Properties and Surface Modification with Asparagine |
title_sort |
Luminescent Terbium Doped Aluminate Particles: Properties and Surface Modification with Asparagine |
author |
Caiut,José M. A. |
author_facet |
Caiut,José M. A. Messaddeq,Younes Dexpert,Hervé Verelst,Marc Ribeiro,Sidney J. L. Dexpert-Ghys,Jeannette |
author_role |
author |
author2 |
Messaddeq,Younes Dexpert,Hervé Verelst,Marc Ribeiro,Sidney J. L. Dexpert-Ghys,Jeannette |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Caiut,José M. A. Messaddeq,Younes Dexpert,Hervé Verelst,Marc Ribeiro,Sidney J. L. Dexpert-Ghys,Jeannette |
dc.subject.por.fl_str_mv |
hybrid spray pyrolysis alumina rare earth terbium luminescence |
topic |
hybrid spray pyrolysis alumina rare earth terbium luminescence |
description |
New luminescent organic-inorganic hybrid particles based on Tb-doped aluminates and asparagine (Asn) surface modifiers were investigated. The Tb3+ doped inorganic core was obtained by spray pyrolysis, at 200 ºC γ-AlOOH (BOE:Tbx%) or at 700 ºC γ-Al2O3 (γTA:Tbx%). The reaction of Asn with boehmite in water disaggregated the sub-micronic boehmite particles to give stable dispersion of surface modified nanoparticles Asn:BOE:Tbx% (x = 1 or 5). Concerning the Asn:γTA:Tbx% system, an Asn film wrapping alumina particles was observed. Photoluminescence spectra exhibited the bands assigned to Tb3+5D4 → 7FJ = 6-3 transitions. A broad absorption band (240 nm) was assigned to the host (aluminate) to ion (Tb3+) energy transfer. Efficient energy transfer was observed when active ions are incorporated in the defect-spinel structure of γTA, whereas it was relatively weak for BOE:Tb where Tb3+ are bonded to the hydroxyls groups at nanocrystals surface. It is noticeable that Asn strengthens the linkage of Tb3+ with the aluminate matrix, enhancing the host to dopant energy transfer. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532015001202536 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532015001202536 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5935/0103-5053.20150213 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
dc.source.none.fl_str_mv |
Journal of the Brazilian Chemical Society v.26 n.12 2015 reponame:Journal of the Brazilian Chemical Society (Online) instname:Sociedade Brasileira de Química (SBQ) instacron:SBQ |
instname_str |
Sociedade Brasileira de Química (SBQ) |
instacron_str |
SBQ |
institution |
SBQ |
reponame_str |
Journal of the Brazilian Chemical Society (Online) |
collection |
Journal of the Brazilian Chemical Society (Online) |
repository.name.fl_str_mv |
Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ) |
repository.mail.fl_str_mv |
||office@jbcs.sbq.org.br |
_version_ |
1750318177868316672 |