Characterisation of electrodeposited and heat-treated Ni−Mo−P coatings
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of the Brazilian Chemical Society (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532012000200020 |
Resumo: | The electrodeposition, hardness and corrosion resistance properties of Ni−Mo−P coatings were investigated. Characterisations of the electrodeposited coatings were carried out using scanning electron microscopy, X-ray diffraction and energy dispersive X-ray analysis techniques. Corrosion tests were performed at room temperature in 10-1 mol dm-3 NaCl solutions and by potentiodynamic linear polarisation. Amorphous Ni−Mo−P coatings were successfully obtained by electrodeposition using direct current. The coating composition showed to be dependent on the bath composition, current density and bath temperature. Both P and Mo contents contribute for the hardness properties of the Ni−Mo−P coatings and the absence of cracks is a requirement to produce electrodeposited Ni−Mo−P coatings with good hardness properties. The hardness values increase with heat-treatment temperature due to the precipitation of Ni, Ni3P and NiMo phases during the heat treatment. The corrosion resistance of the electrodeposited Ni−Mo−P amorphous coatings increases with P content in the layer. Among the electrodeposited Ni−Mo−P amorphous coatings, Ni78Mo10P12 presented the best hardness and corrosion-resistance properties. The results showed that the addition of P is beneficial for the hardness and corrosion resistance properties of the Ni−Mo-based coatings. |
id |
SBQ-2_370b45bdad2bffaefd4265a3eb6f9d8c |
---|---|
oai_identifier_str |
oai:scielo:S0103-50532012000200020 |
network_acronym_str |
SBQ-2 |
network_name_str |
Journal of the Brazilian Chemical Society (Online) |
repository_id_str |
|
spelling |
Characterisation of electrodeposited and heat-treated Ni−Mo−P coatingsNi−Mo−PelectrodepositionamorphouscorrosionhardnessThe electrodeposition, hardness and corrosion resistance properties of Ni−Mo−P coatings were investigated. Characterisations of the electrodeposited coatings were carried out using scanning electron microscopy, X-ray diffraction and energy dispersive X-ray analysis techniques. Corrosion tests were performed at room temperature in 10-1 mol dm-3 NaCl solutions and by potentiodynamic linear polarisation. Amorphous Ni−Mo−P coatings were successfully obtained by electrodeposition using direct current. The coating composition showed to be dependent on the bath composition, current density and bath temperature. Both P and Mo contents contribute for the hardness properties of the Ni−Mo−P coatings and the absence of cracks is a requirement to produce electrodeposited Ni−Mo−P coatings with good hardness properties. The hardness values increase with heat-treatment temperature due to the precipitation of Ni, Ni3P and NiMo phases during the heat treatment. The corrosion resistance of the electrodeposited Ni−Mo−P amorphous coatings increases with P content in the layer. Among the electrodeposited Ni−Mo−P amorphous coatings, Ni78Mo10P12 presented the best hardness and corrosion-resistance properties. The results showed that the addition of P is beneficial for the hardness and corrosion resistance properties of the Ni−Mo-based coatings.Sociedade Brasileira de Química2012-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532012000200020Journal of the Brazilian Chemical Society v.23 n.2 2012reponame:Journal of the Brazilian Chemical Society (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.1590/S0103-50532012000200020info:eu-repo/semantics/openAccessMelo,Régis L.Casciano,Paulo N. S.Correia,Adriana N.Lima-Neto,Pedro deeng2012-03-02T00:00:00Zoai:scielo:S0103-50532012000200020Revistahttp://jbcs.sbq.org.brONGhttps://old.scielo.br/oai/scielo-oai.php||office@jbcs.sbq.org.br1678-47900103-5053opendoar:2012-03-02T00:00Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)false |
dc.title.none.fl_str_mv |
Characterisation of electrodeposited and heat-treated Ni−Mo−P coatings |
title |
Characterisation of electrodeposited and heat-treated Ni−Mo−P coatings |
spellingShingle |
Characterisation of electrodeposited and heat-treated Ni−Mo−P coatings Melo,Régis L. Ni−Mo−P electrodeposition amorphous corrosion hardness |
title_short |
Characterisation of electrodeposited and heat-treated Ni−Mo−P coatings |
title_full |
Characterisation of electrodeposited and heat-treated Ni−Mo−P coatings |
title_fullStr |
Characterisation of electrodeposited and heat-treated Ni−Mo−P coatings |
title_full_unstemmed |
Characterisation of electrodeposited and heat-treated Ni−Mo−P coatings |
title_sort |
Characterisation of electrodeposited and heat-treated Ni−Mo−P coatings |
author |
Melo,Régis L. |
author_facet |
Melo,Régis L. Casciano,Paulo N. S. Correia,Adriana N. Lima-Neto,Pedro de |
author_role |
author |
author2 |
Casciano,Paulo N. S. Correia,Adriana N. Lima-Neto,Pedro de |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Melo,Régis L. Casciano,Paulo N. S. Correia,Adriana N. Lima-Neto,Pedro de |
dc.subject.por.fl_str_mv |
Ni−Mo−P electrodeposition amorphous corrosion hardness |
topic |
Ni−Mo−P electrodeposition amorphous corrosion hardness |
description |
The electrodeposition, hardness and corrosion resistance properties of Ni−Mo−P coatings were investigated. Characterisations of the electrodeposited coatings were carried out using scanning electron microscopy, X-ray diffraction and energy dispersive X-ray analysis techniques. Corrosion tests were performed at room temperature in 10-1 mol dm-3 NaCl solutions and by potentiodynamic linear polarisation. Amorphous Ni−Mo−P coatings were successfully obtained by electrodeposition using direct current. The coating composition showed to be dependent on the bath composition, current density and bath temperature. Both P and Mo contents contribute for the hardness properties of the Ni−Mo−P coatings and the absence of cracks is a requirement to produce electrodeposited Ni−Mo−P coatings with good hardness properties. The hardness values increase with heat-treatment temperature due to the precipitation of Ni, Ni3P and NiMo phases during the heat treatment. The corrosion resistance of the electrodeposited Ni−Mo−P amorphous coatings increases with P content in the layer. Among the electrodeposited Ni−Mo−P amorphous coatings, Ni78Mo10P12 presented the best hardness and corrosion-resistance properties. The results showed that the addition of P is beneficial for the hardness and corrosion resistance properties of the Ni−Mo-based coatings. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-02-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532012000200020 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532012000200020 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0103-50532012000200020 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
dc.source.none.fl_str_mv |
Journal of the Brazilian Chemical Society v.23 n.2 2012 reponame:Journal of the Brazilian Chemical Society (Online) instname:Sociedade Brasileira de Química (SBQ) instacron:SBQ |
instname_str |
Sociedade Brasileira de Química (SBQ) |
instacron_str |
SBQ |
institution |
SBQ |
reponame_str |
Journal of the Brazilian Chemical Society (Online) |
collection |
Journal of the Brazilian Chemical Society (Online) |
repository.name.fl_str_mv |
Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ) |
repository.mail.fl_str_mv |
||office@jbcs.sbq.org.br |
_version_ |
1750318173100441600 |