Probability density function from experimental positron annihilation lifetime spectra

Detalhes bibliográficos
Autor(a) principal: Viterbo,V.C.
Data de Publicação: 2005
Outros Autores: Sebastião,R.C.O., Monteiro,R.P.G., Magalhães,W.F., Braga,J.P.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Chemical Society (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532005000100014
Resumo: Inversion of experimental positron annihilation lifetime spectra was carried out to obtain the probability density function. Apparatus resolution together with experimental noise was taken into consideration while solving this ill posed problem. The singular value decomposition approach, moving the boundary between the subspaces was the theoretical formulation to calculate the probability density function. For the system considered, the Al(dpm)3 complex, three peaks will be presented in the inverted spectra, indicating the presence of the para-Positronium, the free positron and the ortho-Positronium. The predicted positions were, 0.1042 ns, 0.3542 ns and 1.3958 ns, respectively. Since the present approach gives the distribution of the species, it was possible also to predict the relative importance of each species in the spectra. The areas found correspond to: 13%, 32%, 55%. Both these results, position of the peaks and the areas, together with the half-life distribution can provide important information for experimentalists.
id SBQ-2_39dc219db44e0fe49ce49bb07e4b56d1
oai_identifier_str oai:scielo:S0103-50532005000100014
network_acronym_str SBQ-2
network_name_str Journal of the Brazilian Chemical Society (Online)
repository_id_str
spelling Probability density function from experimental positron annihilation lifetime spectraprobability density functionpositron annihilation lifetime espectrasingular value decompositionInversion of experimental positron annihilation lifetime spectra was carried out to obtain the probability density function. Apparatus resolution together with experimental noise was taken into consideration while solving this ill posed problem. The singular value decomposition approach, moving the boundary between the subspaces was the theoretical formulation to calculate the probability density function. For the system considered, the Al(dpm)3 complex, three peaks will be presented in the inverted spectra, indicating the presence of the para-Positronium, the free positron and the ortho-Positronium. The predicted positions were, 0.1042 ns, 0.3542 ns and 1.3958 ns, respectively. Since the present approach gives the distribution of the species, it was possible also to predict the relative importance of each species in the spectra. The areas found correspond to: 13%, 32%, 55%. Both these results, position of the peaks and the areas, together with the half-life distribution can provide important information for experimentalists.Sociedade Brasileira de Química2005-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532005000100014Journal of the Brazilian Chemical Society v.16 n.1 2005reponame:Journal of the Brazilian Chemical Society (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.1590/S0103-50532005000100014info:eu-repo/semantics/openAccessViterbo,V.C.Sebastião,R.C.O.Monteiro,R.P.G.Magalhães,W.F.Braga,J.P.eng2005-03-22T00:00:00Zoai:scielo:S0103-50532005000100014Revistahttp://jbcs.sbq.org.brONGhttps://old.scielo.br/oai/scielo-oai.php||office@jbcs.sbq.org.br1678-47900103-5053opendoar:2005-03-22T00:00Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)false
dc.title.none.fl_str_mv Probability density function from experimental positron annihilation lifetime spectra
title Probability density function from experimental positron annihilation lifetime spectra
spellingShingle Probability density function from experimental positron annihilation lifetime spectra
Viterbo,V.C.
probability density function
positron annihilation lifetime espectra
singular value decomposition
title_short Probability density function from experimental positron annihilation lifetime spectra
title_full Probability density function from experimental positron annihilation lifetime spectra
title_fullStr Probability density function from experimental positron annihilation lifetime spectra
title_full_unstemmed Probability density function from experimental positron annihilation lifetime spectra
title_sort Probability density function from experimental positron annihilation lifetime spectra
author Viterbo,V.C.
author_facet Viterbo,V.C.
Sebastião,R.C.O.
Monteiro,R.P.G.
Magalhães,W.F.
Braga,J.P.
author_role author
author2 Sebastião,R.C.O.
Monteiro,R.P.G.
Magalhães,W.F.
Braga,J.P.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Viterbo,V.C.
Sebastião,R.C.O.
Monteiro,R.P.G.
Magalhães,W.F.
Braga,J.P.
dc.subject.por.fl_str_mv probability density function
positron annihilation lifetime espectra
singular value decomposition
topic probability density function
positron annihilation lifetime espectra
singular value decomposition
description Inversion of experimental positron annihilation lifetime spectra was carried out to obtain the probability density function. Apparatus resolution together with experimental noise was taken into consideration while solving this ill posed problem. The singular value decomposition approach, moving the boundary between the subspaces was the theoretical formulation to calculate the probability density function. For the system considered, the Al(dpm)3 complex, three peaks will be presented in the inverted spectra, indicating the presence of the para-Positronium, the free positron and the ortho-Positronium. The predicted positions were, 0.1042 ns, 0.3542 ns and 1.3958 ns, respectively. Since the present approach gives the distribution of the species, it was possible also to predict the relative importance of each species in the spectra. The areas found correspond to: 13%, 32%, 55%. Both these results, position of the peaks and the areas, together with the half-life distribution can provide important information for experimentalists.
publishDate 2005
dc.date.none.fl_str_mv 2005-02-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532005000100014
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532005000100014
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-50532005000100014
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Química
publisher.none.fl_str_mv Sociedade Brasileira de Química
dc.source.none.fl_str_mv Journal of the Brazilian Chemical Society v.16 n.1 2005
reponame:Journal of the Brazilian Chemical Society (Online)
instname:Sociedade Brasileira de Química (SBQ)
instacron:SBQ
instname_str Sociedade Brasileira de Química (SBQ)
instacron_str SBQ
institution SBQ
reponame_str Journal of the Brazilian Chemical Society (Online)
collection Journal of the Brazilian Chemical Society (Online)
repository.name.fl_str_mv Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)
repository.mail.fl_str_mv ||office@jbcs.sbq.org.br
_version_ 1750318166135799808