The nature of the chemical bond

Detalhes bibliográficos
Autor(a) principal: Nascimento,Marco Antonio Chaer
Data de Publicação: 2008
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Chemical Society (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532008000200007
Resumo: In this paper we briefly review the basic requirements that must be satisfied by any wave function representing many-electron systems. Following that, we examine the conditions under which the classical concepts of molecular structure, chemical structure and chemical bond can be translated into a quantum-mechanical language. Essential to this aim is the utilization of an independent particle model (IPM) for a many-electron system. In spite of the great popularity of the Hartree-Fock (HF) model only Valence-Bond (VB) type wave functions with optimized, singly occupied and non necessarily orthogonal atomic-like orbitals, can provide a quantum-mechanical translation of the classical concepts of chemical structure and chemical bond, although the HF model can still be useful for translating the concept of molecular structure. Finally, a quantum-dynamical-type of analysis allows us to conclude that, from the quantum mechanical point of view, the chemical bond is a consequence of interference effects. From the energetic point of view, the interference effect responsible for the bond formation manifests itself as a reduction of the kinetic energy of the electrons as the bond is formed.
id SBQ-2_435fd1ab476c1d9233280eb7c7994e14
oai_identifier_str oai:scielo:S0103-50532008000200007
network_acronym_str SBQ-2
network_name_str Journal of the Brazilian Chemical Society (Online)
repository_id_str
spelling The nature of the chemical bondchemical bondgeneralized valence bondquantum interferencepermutation symmetrymany-electrons wave functionIn this paper we briefly review the basic requirements that must be satisfied by any wave function representing many-electron systems. Following that, we examine the conditions under which the classical concepts of molecular structure, chemical structure and chemical bond can be translated into a quantum-mechanical language. Essential to this aim is the utilization of an independent particle model (IPM) for a many-electron system. In spite of the great popularity of the Hartree-Fock (HF) model only Valence-Bond (VB) type wave functions with optimized, singly occupied and non necessarily orthogonal atomic-like orbitals, can provide a quantum-mechanical translation of the classical concepts of chemical structure and chemical bond, although the HF model can still be useful for translating the concept of molecular structure. Finally, a quantum-dynamical-type of analysis allows us to conclude that, from the quantum mechanical point of view, the chemical bond is a consequence of interference effects. From the energetic point of view, the interference effect responsible for the bond formation manifests itself as a reduction of the kinetic energy of the electrons as the bond is formed.Sociedade Brasileira de Química2008-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532008000200007Journal of the Brazilian Chemical Society v.19 n.2 2008reponame:Journal of the Brazilian Chemical Society (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.1590/S0103-50532008000200007info:eu-repo/semantics/openAccessNascimento,Marco Antonio Chaereng2008-04-08T00:00:00Zoai:scielo:S0103-50532008000200007Revistahttp://jbcs.sbq.org.brONGhttps://old.scielo.br/oai/scielo-oai.php||office@jbcs.sbq.org.br1678-47900103-5053opendoar:2008-04-08T00:00Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)false
dc.title.none.fl_str_mv The nature of the chemical bond
title The nature of the chemical bond
spellingShingle The nature of the chemical bond
Nascimento,Marco Antonio Chaer
chemical bond
generalized valence bond
quantum interference
permutation symmetry
many-electrons wave function
title_short The nature of the chemical bond
title_full The nature of the chemical bond
title_fullStr The nature of the chemical bond
title_full_unstemmed The nature of the chemical bond
title_sort The nature of the chemical bond
author Nascimento,Marco Antonio Chaer
author_facet Nascimento,Marco Antonio Chaer
author_role author
dc.contributor.author.fl_str_mv Nascimento,Marco Antonio Chaer
dc.subject.por.fl_str_mv chemical bond
generalized valence bond
quantum interference
permutation symmetry
many-electrons wave function
topic chemical bond
generalized valence bond
quantum interference
permutation symmetry
many-electrons wave function
description In this paper we briefly review the basic requirements that must be satisfied by any wave function representing many-electron systems. Following that, we examine the conditions under which the classical concepts of molecular structure, chemical structure and chemical bond can be translated into a quantum-mechanical language. Essential to this aim is the utilization of an independent particle model (IPM) for a many-electron system. In spite of the great popularity of the Hartree-Fock (HF) model only Valence-Bond (VB) type wave functions with optimized, singly occupied and non necessarily orthogonal atomic-like orbitals, can provide a quantum-mechanical translation of the classical concepts of chemical structure and chemical bond, although the HF model can still be useful for translating the concept of molecular structure. Finally, a quantum-dynamical-type of analysis allows us to conclude that, from the quantum mechanical point of view, the chemical bond is a consequence of interference effects. From the energetic point of view, the interference effect responsible for the bond formation manifests itself as a reduction of the kinetic energy of the electrons as the bond is formed.
publishDate 2008
dc.date.none.fl_str_mv 2008-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532008000200007
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532008000200007
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-50532008000200007
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Química
publisher.none.fl_str_mv Sociedade Brasileira de Química
dc.source.none.fl_str_mv Journal of the Brazilian Chemical Society v.19 n.2 2008
reponame:Journal of the Brazilian Chemical Society (Online)
instname:Sociedade Brasileira de Química (SBQ)
instacron:SBQ
instname_str Sociedade Brasileira de Química (SBQ)
instacron_str SBQ
institution SBQ
reponame_str Journal of the Brazilian Chemical Society (Online)
collection Journal of the Brazilian Chemical Society (Online)
repository.name.fl_str_mv Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)
repository.mail.fl_str_mv ||office@jbcs.sbq.org.br
_version_ 1750318168607293440