A direct dynamics study of protonated alcohol dehydration and the Diels-Alder reaction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of the Brazilian Chemical Society (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532009000400009 |
Resumo: | The dynamics of dehydration of the protonated (R)-3,3-dimethylbutan-2-ol (pinacolyl alcohol), [(CH3)3C-CH(OH2)CH3]+, and of ethene + 1,3-butadiene cycloaddition were studied with the Born-Oppenheimer molecular dynamics (BOMD) technique for direct dynamics using the AM1 method. More than 10,000 trajectories were generated, most of them related to the unexplored simulated annealing/fragmentation approach. The AM1 potential energy surface (PES) for the protonated pinacolyl alcohol presents two transition states related to the [(CH3)3C-CHCH3]+hhhOH2 intermediate complex and to CH3 migration leading to the [(CH3)2C-CH(CH)3]2+hhhOH2 product complex. Direct dynamics yielded negligible trajectories involving these complexes, since the momentum acquired by the H2O fragment led to a complete dissociation. Thus, rearrangement of the secondary carbocation [(CH3)3C-CHCH3]+ was practically inexistent during the dynamics. Despite the concerted path (H2O dissociation and CH3 migration) not being an IRC (intrinsic reaction coordinate) path in AM1-PES, a statistically significant number of trajectories involved this path. As for the Diels-Alder reaction, even when started from a symmetric transition state using the spin restricted AM1 wavefunction, the dynamics yielded a significant number of trajectories that followed asymmetric, i.e.non-IRC, paths toward cyclohexene, independent of the initialization approach. It is noteworthy that all these asymmetric path trajectories led to a concerted reaction mechanism. |
id |
SBQ-2_67a5f4bc0f476f1df5330f1d5a717610 |
---|---|
oai_identifier_str |
oai:scielo:S0103-50532009000400009 |
network_acronym_str |
SBQ-2 |
network_name_str |
Journal of the Brazilian Chemical Society (Online) |
repository_id_str |
|
spelling |
A direct dynamics study of protonated alcohol dehydration and the Diels-Alder reactionprotonated pinacolylethene + 1,3-butadienecycloadditionnon-IRCThe dynamics of dehydration of the protonated (R)-3,3-dimethylbutan-2-ol (pinacolyl alcohol), [(CH3)3C-CH(OH2)CH3]+, and of ethene + 1,3-butadiene cycloaddition were studied with the Born-Oppenheimer molecular dynamics (BOMD) technique for direct dynamics using the AM1 method. More than 10,000 trajectories were generated, most of them related to the unexplored simulated annealing/fragmentation approach. The AM1 potential energy surface (PES) for the protonated pinacolyl alcohol presents two transition states related to the [(CH3)3C-CHCH3]+hhhOH2 intermediate complex and to CH3 migration leading to the [(CH3)2C-CH(CH)3]2+hhhOH2 product complex. Direct dynamics yielded negligible trajectories involving these complexes, since the momentum acquired by the H2O fragment led to a complete dissociation. Thus, rearrangement of the secondary carbocation [(CH3)3C-CHCH3]+ was practically inexistent during the dynamics. Despite the concerted path (H2O dissociation and CH3 migration) not being an IRC (intrinsic reaction coordinate) path in AM1-PES, a statistically significant number of trajectories involved this path. As for the Diels-Alder reaction, even when started from a symmetric transition state using the spin restricted AM1 wavefunction, the dynamics yielded a significant number of trajectories that followed asymmetric, i.e.non-IRC, paths toward cyclohexene, independent of the initialization approach. It is noteworthy that all these asymmetric path trajectories led to a concerted reaction mechanism.Sociedade Brasileira de Química2009-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532009000400009Journal of the Brazilian Chemical Society v.20 n.4 2009reponame:Journal of the Brazilian Chemical Society (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.1590/S0103-50532009000400009info:eu-repo/semantics/openAccessSantos,Marcus V. P. dosTeixeira,Erico S.Longo,Ricardo L.eng2009-06-10T00:00:00Zoai:scielo:S0103-50532009000400009Revistahttp://jbcs.sbq.org.brONGhttps://old.scielo.br/oai/scielo-oai.php||office@jbcs.sbq.org.br1678-47900103-5053opendoar:2009-06-10T00:00Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)false |
dc.title.none.fl_str_mv |
A direct dynamics study of protonated alcohol dehydration and the Diels-Alder reaction |
title |
A direct dynamics study of protonated alcohol dehydration and the Diels-Alder reaction |
spellingShingle |
A direct dynamics study of protonated alcohol dehydration and the Diels-Alder reaction Santos,Marcus V. P. dos protonated pinacolyl ethene + 1,3-butadiene cycloaddition non-IRC |
title_short |
A direct dynamics study of protonated alcohol dehydration and the Diels-Alder reaction |
title_full |
A direct dynamics study of protonated alcohol dehydration and the Diels-Alder reaction |
title_fullStr |
A direct dynamics study of protonated alcohol dehydration and the Diels-Alder reaction |
title_full_unstemmed |
A direct dynamics study of protonated alcohol dehydration and the Diels-Alder reaction |
title_sort |
A direct dynamics study of protonated alcohol dehydration and the Diels-Alder reaction |
author |
Santos,Marcus V. P. dos |
author_facet |
Santos,Marcus V. P. dos Teixeira,Erico S. Longo,Ricardo L. |
author_role |
author |
author2 |
Teixeira,Erico S. Longo,Ricardo L. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Santos,Marcus V. P. dos Teixeira,Erico S. Longo,Ricardo L. |
dc.subject.por.fl_str_mv |
protonated pinacolyl ethene + 1,3-butadiene cycloaddition non-IRC |
topic |
protonated pinacolyl ethene + 1,3-butadiene cycloaddition non-IRC |
description |
The dynamics of dehydration of the protonated (R)-3,3-dimethylbutan-2-ol (pinacolyl alcohol), [(CH3)3C-CH(OH2)CH3]+, and of ethene + 1,3-butadiene cycloaddition were studied with the Born-Oppenheimer molecular dynamics (BOMD) technique for direct dynamics using the AM1 method. More than 10,000 trajectories were generated, most of them related to the unexplored simulated annealing/fragmentation approach. The AM1 potential energy surface (PES) for the protonated pinacolyl alcohol presents two transition states related to the [(CH3)3C-CHCH3]+hhhOH2 intermediate complex and to CH3 migration leading to the [(CH3)2C-CH(CH)3]2+hhhOH2 product complex. Direct dynamics yielded negligible trajectories involving these complexes, since the momentum acquired by the H2O fragment led to a complete dissociation. Thus, rearrangement of the secondary carbocation [(CH3)3C-CHCH3]+ was practically inexistent during the dynamics. Despite the concerted path (H2O dissociation and CH3 migration) not being an IRC (intrinsic reaction coordinate) path in AM1-PES, a statistically significant number of trajectories involved this path. As for the Diels-Alder reaction, even when started from a symmetric transition state using the spin restricted AM1 wavefunction, the dynamics yielded a significant number of trajectories that followed asymmetric, i.e.non-IRC, paths toward cyclohexene, independent of the initialization approach. It is noteworthy that all these asymmetric path trajectories led to a concerted reaction mechanism. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532009000400009 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532009000400009 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0103-50532009000400009 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
dc.source.none.fl_str_mv |
Journal of the Brazilian Chemical Society v.20 n.4 2009 reponame:Journal of the Brazilian Chemical Society (Online) instname:Sociedade Brasileira de Química (SBQ) instacron:SBQ |
instname_str |
Sociedade Brasileira de Química (SBQ) |
instacron_str |
SBQ |
institution |
SBQ |
reponame_str |
Journal of the Brazilian Chemical Society (Online) |
collection |
Journal of the Brazilian Chemical Society (Online) |
repository.name.fl_str_mv |
Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ) |
repository.mail.fl_str_mv |
||office@jbcs.sbq.org.br |
_version_ |
1750318169816301568 |