Dispersive Liquid-Liquid Microextraction with Liquid Chromatography-Tandem Mass Spectrometry for the Determination of Triazine, Neonicotinoid, Triazole and Imidazolinone Pesticides in Mineral Water Samples

Detalhes bibliográficos
Autor(a) principal: Bolzan,Cátia M.
Data de Publicação: 2015
Outros Autores: Caldas,Sergiane S., Guimarães,Bruno S., Primel,Ednei G.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Chemical Society (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532015000901902
Resumo: Mineral water is known for its high purity. Because mineral water is produced by the infiltration of water through the soil, there is the possibility of contamination with pesticides. The aim of this study was to develop a simple, rapid and efficient method for the extraction and preconcentration of different classes of pesticides in mineral water samples by dispersive liquid-liquid microextraction (DLLME) coupled with liquid chromatography tandem mass spectrometry. To optimize the DLLME conditions for the different classes of pesticides and access the effect of variables on the extraction, a central composite design (CCD) with a five-level fractional factorial design was used for the construction of a second order response surface model (RSM). The limits of quantification were between 0.005 and 0.5 μg L-1. Correlation coefficients (r) were higher than 0.999. Recoveries ranged from 102 to 120%, with relative standard deviations between 1 and 10%. Low matrix effect for all compounds was observed. The result showed that using a mixture of acetone and acetonitrile as disperser solvent and a mixture of chloroform and monochlorobenzene as extractor solvent, it is possible to employ the traditional DLLME with chlorinated solvents to extract the multiclass pesticides from the water samples.
id SBQ-2_6c7673872204facea62ba974cdeb4200
oai_identifier_str oai:scielo:S0103-50532015000901902
network_acronym_str SBQ-2
network_name_str Journal of the Brazilian Chemical Society (Online)
repository_id_str
spelling Dispersive Liquid-Liquid Microextraction with Liquid Chromatography-Tandem Mass Spectrometry for the Determination of Triazine, Neonicotinoid, Triazole and Imidazolinone Pesticides in Mineral Water Samplesdispersive liquid-liquid microextractionmulticlass pesticidessample preparationmineral water samplesMineral water is known for its high purity. Because mineral water is produced by the infiltration of water through the soil, there is the possibility of contamination with pesticides. The aim of this study was to develop a simple, rapid and efficient method for the extraction and preconcentration of different classes of pesticides in mineral water samples by dispersive liquid-liquid microextraction (DLLME) coupled with liquid chromatography tandem mass spectrometry. To optimize the DLLME conditions for the different classes of pesticides and access the effect of variables on the extraction, a central composite design (CCD) with a five-level fractional factorial design was used for the construction of a second order response surface model (RSM). The limits of quantification were between 0.005 and 0.5 μg L-1. Correlation coefficients (r) were higher than 0.999. Recoveries ranged from 102 to 120%, with relative standard deviations between 1 and 10%. Low matrix effect for all compounds was observed. The result showed that using a mixture of acetone and acetonitrile as disperser solvent and a mixture of chloroform and monochlorobenzene as extractor solvent, it is possible to employ the traditional DLLME with chlorinated solvents to extract the multiclass pesticides from the water samples.Sociedade Brasileira de Química2015-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532015000901902Journal of the Brazilian Chemical Society v.26 n.9 2015reponame:Journal of the Brazilian Chemical Society (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.5935/0103-5053.20150168info:eu-repo/semantics/openAccessBolzan,Cátia M.Caldas,Sergiane S.Guimarães,Bruno S.Primel,Ednei G.eng2015-09-11T00:00:00Zoai:scielo:S0103-50532015000901902Revistahttp://jbcs.sbq.org.brONGhttps://old.scielo.br/oai/scielo-oai.php||office@jbcs.sbq.org.br1678-47900103-5053opendoar:2015-09-11T00:00Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)false
dc.title.none.fl_str_mv Dispersive Liquid-Liquid Microextraction with Liquid Chromatography-Tandem Mass Spectrometry for the Determination of Triazine, Neonicotinoid, Triazole and Imidazolinone Pesticides in Mineral Water Samples
title Dispersive Liquid-Liquid Microextraction with Liquid Chromatography-Tandem Mass Spectrometry for the Determination of Triazine, Neonicotinoid, Triazole and Imidazolinone Pesticides in Mineral Water Samples
spellingShingle Dispersive Liquid-Liquid Microextraction with Liquid Chromatography-Tandem Mass Spectrometry for the Determination of Triazine, Neonicotinoid, Triazole and Imidazolinone Pesticides in Mineral Water Samples
Bolzan,Cátia M.
dispersive liquid-liquid microextraction
multiclass pesticides
sample preparation
mineral water samples
title_short Dispersive Liquid-Liquid Microextraction with Liquid Chromatography-Tandem Mass Spectrometry for the Determination of Triazine, Neonicotinoid, Triazole and Imidazolinone Pesticides in Mineral Water Samples
title_full Dispersive Liquid-Liquid Microextraction with Liquid Chromatography-Tandem Mass Spectrometry for the Determination of Triazine, Neonicotinoid, Triazole and Imidazolinone Pesticides in Mineral Water Samples
title_fullStr Dispersive Liquid-Liquid Microextraction with Liquid Chromatography-Tandem Mass Spectrometry for the Determination of Triazine, Neonicotinoid, Triazole and Imidazolinone Pesticides in Mineral Water Samples
title_full_unstemmed Dispersive Liquid-Liquid Microextraction with Liquid Chromatography-Tandem Mass Spectrometry for the Determination of Triazine, Neonicotinoid, Triazole and Imidazolinone Pesticides in Mineral Water Samples
title_sort Dispersive Liquid-Liquid Microextraction with Liquid Chromatography-Tandem Mass Spectrometry for the Determination of Triazine, Neonicotinoid, Triazole and Imidazolinone Pesticides in Mineral Water Samples
author Bolzan,Cátia M.
author_facet Bolzan,Cátia M.
Caldas,Sergiane S.
Guimarães,Bruno S.
Primel,Ednei G.
author_role author
author2 Caldas,Sergiane S.
Guimarães,Bruno S.
Primel,Ednei G.
author2_role author
author
author
dc.contributor.author.fl_str_mv Bolzan,Cátia M.
Caldas,Sergiane S.
Guimarães,Bruno S.
Primel,Ednei G.
dc.subject.por.fl_str_mv dispersive liquid-liquid microextraction
multiclass pesticides
sample preparation
mineral water samples
topic dispersive liquid-liquid microextraction
multiclass pesticides
sample preparation
mineral water samples
description Mineral water is known for its high purity. Because mineral water is produced by the infiltration of water through the soil, there is the possibility of contamination with pesticides. The aim of this study was to develop a simple, rapid and efficient method for the extraction and preconcentration of different classes of pesticides in mineral water samples by dispersive liquid-liquid microextraction (DLLME) coupled with liquid chromatography tandem mass spectrometry. To optimize the DLLME conditions for the different classes of pesticides and access the effect of variables on the extraction, a central composite design (CCD) with a five-level fractional factorial design was used for the construction of a second order response surface model (RSM). The limits of quantification were between 0.005 and 0.5 μg L-1. Correlation coefficients (r) were higher than 0.999. Recoveries ranged from 102 to 120%, with relative standard deviations between 1 and 10%. Low matrix effect for all compounds was observed. The result showed that using a mixture of acetone and acetonitrile as disperser solvent and a mixture of chloroform and monochlorobenzene as extractor solvent, it is possible to employ the traditional DLLME with chlorinated solvents to extract the multiclass pesticides from the water samples.
publishDate 2015
dc.date.none.fl_str_mv 2015-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532015000901902
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532015000901902
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5935/0103-5053.20150168
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Química
publisher.none.fl_str_mv Sociedade Brasileira de Química
dc.source.none.fl_str_mv Journal of the Brazilian Chemical Society v.26 n.9 2015
reponame:Journal of the Brazilian Chemical Society (Online)
instname:Sociedade Brasileira de Química (SBQ)
instacron:SBQ
instname_str Sociedade Brasileira de Química (SBQ)
instacron_str SBQ
institution SBQ
reponame_str Journal of the Brazilian Chemical Society (Online)
collection Journal of the Brazilian Chemical Society (Online)
repository.name.fl_str_mv Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)
repository.mail.fl_str_mv ||office@jbcs.sbq.org.br
_version_ 1750318177491877888