Nucleation and growth mechanism of polycarbazole deposited by electrochemistry
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of the Brazilian Chemical Society (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532007000300017 |
Resumo: | Polycarbazole (PCz) thin films have been deposited by electro-oxidation of carbazole in LiClO4 + anhydrous acetonitrile onto SnO2 coated glass substrates, by potentiostatic method and the nucleation and growth mechanism (NGM) were studied. The obtained current time transients (j-t) were fitted using a mathematical equation with three contributions: instantaneous nucleation with two-dimensional (IN2D) or three-dimensional (IN3D) growth, and also a progressive nucleation with three dimensional (PN3D) growth. At the beginning, the IN2D contribution is predominant but, quickly the IN3D processes become more important. At a deposition time t > 17 s the IN3D corresponds to 80 % of the total current. The visualization by scanning electron microscopy of the surface morphology of the PCz films is in agreement with the NGM proposed by the mathematical method. The film covers very rapidly the SnO2 under layer related to the 2D process, even if some heterogeneities randomly distributed in the films, issued from the 3D processes, are also visible. After two minutes of deposition, the roughness of the whole surface of the films corroborates the 3D processes domination. Therefore, the information directly obtained from the (j-t) transients is a suitable and very useful tool to predict the working conditions in order to control the type of morphology of the film prepared by electropolymerization. |
id |
SBQ-2_7bfd0f14ff400ade4427c2e9f5bc1c59 |
---|---|
oai_identifier_str |
oai:scielo:S0103-50532007000300017 |
network_acronym_str |
SBQ-2 |
network_name_str |
Journal of the Brazilian Chemical Society (Online) |
repository_id_str |
|
spelling |
Nucleation and growth mechanism of polycarbazole deposited by electrochemistrypolycarbazoleelectropolymerizationnucleation and growth mechanismsmorphologyPolycarbazole (PCz) thin films have been deposited by electro-oxidation of carbazole in LiClO4 + anhydrous acetonitrile onto SnO2 coated glass substrates, by potentiostatic method and the nucleation and growth mechanism (NGM) were studied. The obtained current time transients (j-t) were fitted using a mathematical equation with three contributions: instantaneous nucleation with two-dimensional (IN2D) or three-dimensional (IN3D) growth, and also a progressive nucleation with three dimensional (PN3D) growth. At the beginning, the IN2D contribution is predominant but, quickly the IN3D processes become more important. At a deposition time t > 17 s the IN3D corresponds to 80 % of the total current. The visualization by scanning electron microscopy of the surface morphology of the PCz films is in agreement with the NGM proposed by the mathematical method. The film covers very rapidly the SnO2 under layer related to the 2D process, even if some heterogeneities randomly distributed in the films, issued from the 3D processes, are also visible. After two minutes of deposition, the roughness of the whole surface of the films corroborates the 3D processes domination. Therefore, the information directly obtained from the (j-t) transients is a suitable and very useful tool to predict the working conditions in order to control the type of morphology of the film prepared by electropolymerization.Sociedade Brasileira de Química2007-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532007000300017Journal of the Brazilian Chemical Society v.18 n.3 2007reponame:Journal of the Brazilian Chemical Society (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.1590/S0103-50532007000300017info:eu-repo/semantics/openAccessAbé,S. YapiUgalde,Lasteniadel Valle,M. AngélicaTrégouët,YannBernède,J. Christianeng2007-06-28T00:00:00Zoai:scielo:S0103-50532007000300017Revistahttp://jbcs.sbq.org.brONGhttps://old.scielo.br/oai/scielo-oai.php||office@jbcs.sbq.org.br1678-47900103-5053opendoar:2007-06-28T00:00Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)false |
dc.title.none.fl_str_mv |
Nucleation and growth mechanism of polycarbazole deposited by electrochemistry |
title |
Nucleation and growth mechanism of polycarbazole deposited by electrochemistry |
spellingShingle |
Nucleation and growth mechanism of polycarbazole deposited by electrochemistry Abé,S. Yapi polycarbazole electropolymerization nucleation and growth mechanisms morphology |
title_short |
Nucleation and growth mechanism of polycarbazole deposited by electrochemistry |
title_full |
Nucleation and growth mechanism of polycarbazole deposited by electrochemistry |
title_fullStr |
Nucleation and growth mechanism of polycarbazole deposited by electrochemistry |
title_full_unstemmed |
Nucleation and growth mechanism of polycarbazole deposited by electrochemistry |
title_sort |
Nucleation and growth mechanism of polycarbazole deposited by electrochemistry |
author |
Abé,S. Yapi |
author_facet |
Abé,S. Yapi Ugalde,Lastenia del Valle,M. Angélica Trégouët,Yann Bernède,J. Christian |
author_role |
author |
author2 |
Ugalde,Lastenia del Valle,M. Angélica Trégouët,Yann Bernède,J. Christian |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Abé,S. Yapi Ugalde,Lastenia del Valle,M. Angélica Trégouët,Yann Bernède,J. Christian |
dc.subject.por.fl_str_mv |
polycarbazole electropolymerization nucleation and growth mechanisms morphology |
topic |
polycarbazole electropolymerization nucleation and growth mechanisms morphology |
description |
Polycarbazole (PCz) thin films have been deposited by electro-oxidation of carbazole in LiClO4 + anhydrous acetonitrile onto SnO2 coated glass substrates, by potentiostatic method and the nucleation and growth mechanism (NGM) were studied. The obtained current time transients (j-t) were fitted using a mathematical equation with three contributions: instantaneous nucleation with two-dimensional (IN2D) or three-dimensional (IN3D) growth, and also a progressive nucleation with three dimensional (PN3D) growth. At the beginning, the IN2D contribution is predominant but, quickly the IN3D processes become more important. At a deposition time t > 17 s the IN3D corresponds to 80 % of the total current. The visualization by scanning electron microscopy of the surface morphology of the PCz films is in agreement with the NGM proposed by the mathematical method. The film covers very rapidly the SnO2 under layer related to the 2D process, even if some heterogeneities randomly distributed in the films, issued from the 3D processes, are also visible. After two minutes of deposition, the roughness of the whole surface of the films corroborates the 3D processes domination. Therefore, the information directly obtained from the (j-t) transients is a suitable and very useful tool to predict the working conditions in order to control the type of morphology of the film prepared by electropolymerization. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532007000300017 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532007000300017 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0103-50532007000300017 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
dc.source.none.fl_str_mv |
Journal of the Brazilian Chemical Society v.18 n.3 2007 reponame:Journal of the Brazilian Chemical Society (Online) instname:Sociedade Brasileira de Química (SBQ) instacron:SBQ |
instname_str |
Sociedade Brasileira de Química (SBQ) |
instacron_str |
SBQ |
institution |
SBQ |
reponame_str |
Journal of the Brazilian Chemical Society (Online) |
collection |
Journal of the Brazilian Chemical Society (Online) |
repository.name.fl_str_mv |
Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ) |
repository.mail.fl_str_mv |
||office@jbcs.sbq.org.br |
_version_ |
1750318168117608448 |