Photocatalytic production of hydrogen: an innovative use for biomass derivatives
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of the Brazilian Chemical Society (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532011000800002 |
Resumo: | Hydrogen is considered the energy carrier of the future because of its clean and very flexible conversion into different forms of energy, e.g., into heat via combustion or electricity via fuel cells. Traditionally, hydrogen is produced from natural gas steam reforming from fossil fuels making the effective implementation of hydrogen economically and environmentally unsustainable. To overcome this problem, several routes are being proposed for hydrogen production from renewable sources. Recent research points to the photoinduced reforming of biomass as a promising possibility, since it uses solar radiation, an inexhaustible source of energy, and raw materials derived from renewable sources such as biomass and water. Studies in this field are still incipient but quite encouraging. The process combines photocatalytic water splitting with the photodecomposition of organic compounds mediated by an irradiated semiconductor. In this process, the water oxidation reaction is suppressed by a sacrificial electron donor (biomass), as well as the formation of superoxide radicals when the reaction is carried out under anaerobic conditions. The hydrogen production rates from photoinduced reforming are similar or superior to other processes, including biomass hydrolysis and aqueous phase reforming. However, the major researches into hydrogen production by photoinduced reforming of biomass derivatives have focused on TiO2, which limits the portion of solar radiation absorbed as UV light. Thus, the current challenge in this field is the development of narrow band gap semiconductors that are able to drive the photoinduced reform of biomass with visible light, which corresponds to about 43% of solar radiation. |
id |
SBQ-2_9ab424ade09fb4db39e0a779fff4ba44 |
---|---|
oai_identifier_str |
oai:scielo:S0103-50532011000800002 |
network_acronym_str |
SBQ-2 |
network_name_str |
Journal of the Brazilian Chemical Society (Online) |
repository_id_str |
|
spelling |
Photocatalytic production of hydrogen: an innovative use for biomass derivativesphotoinduced reformingbiomasshydrogensunlightphotocatalysisHydrogen is considered the energy carrier of the future because of its clean and very flexible conversion into different forms of energy, e.g., into heat via combustion or electricity via fuel cells. Traditionally, hydrogen is produced from natural gas steam reforming from fossil fuels making the effective implementation of hydrogen economically and environmentally unsustainable. To overcome this problem, several routes are being proposed for hydrogen production from renewable sources. Recent research points to the photoinduced reforming of biomass as a promising possibility, since it uses solar radiation, an inexhaustible source of energy, and raw materials derived from renewable sources such as biomass and water. Studies in this field are still incipient but quite encouraging. The process combines photocatalytic water splitting with the photodecomposition of organic compounds mediated by an irradiated semiconductor. In this process, the water oxidation reaction is suppressed by a sacrificial electron donor (biomass), as well as the formation of superoxide radicals when the reaction is carried out under anaerobic conditions. The hydrogen production rates from photoinduced reforming are similar or superior to other processes, including biomass hydrolysis and aqueous phase reforming. However, the major researches into hydrogen production by photoinduced reforming of biomass derivatives have focused on TiO2, which limits the portion of solar radiation absorbed as UV light. Thus, the current challenge in this field is the development of narrow band gap semiconductors that are able to drive the photoinduced reform of biomass with visible light, which corresponds to about 43% of solar radiation.Sociedade Brasileira de Química2011-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532011000800002Journal of the Brazilian Chemical Society v.22 n.8 2011reponame:Journal of the Brazilian Chemical Society (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.1590/S0103-50532011000800002info:eu-repo/semantics/openAccessMelo,Marcos de OliveiraSilva,Luciana Almeidaeng2011-08-04T00:00:00Zoai:scielo:S0103-50532011000800002Revistahttp://jbcs.sbq.org.brONGhttps://old.scielo.br/oai/scielo-oai.php||office@jbcs.sbq.org.br1678-47900103-5053opendoar:2011-08-04T00:00Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)false |
dc.title.none.fl_str_mv |
Photocatalytic production of hydrogen: an innovative use for biomass derivatives |
title |
Photocatalytic production of hydrogen: an innovative use for biomass derivatives |
spellingShingle |
Photocatalytic production of hydrogen: an innovative use for biomass derivatives Melo,Marcos de Oliveira photoinduced reforming biomass hydrogen sunlight photocatalysis |
title_short |
Photocatalytic production of hydrogen: an innovative use for biomass derivatives |
title_full |
Photocatalytic production of hydrogen: an innovative use for biomass derivatives |
title_fullStr |
Photocatalytic production of hydrogen: an innovative use for biomass derivatives |
title_full_unstemmed |
Photocatalytic production of hydrogen: an innovative use for biomass derivatives |
title_sort |
Photocatalytic production of hydrogen: an innovative use for biomass derivatives |
author |
Melo,Marcos de Oliveira |
author_facet |
Melo,Marcos de Oliveira Silva,Luciana Almeida |
author_role |
author |
author2 |
Silva,Luciana Almeida |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Melo,Marcos de Oliveira Silva,Luciana Almeida |
dc.subject.por.fl_str_mv |
photoinduced reforming biomass hydrogen sunlight photocatalysis |
topic |
photoinduced reforming biomass hydrogen sunlight photocatalysis |
description |
Hydrogen is considered the energy carrier of the future because of its clean and very flexible conversion into different forms of energy, e.g., into heat via combustion or electricity via fuel cells. Traditionally, hydrogen is produced from natural gas steam reforming from fossil fuels making the effective implementation of hydrogen economically and environmentally unsustainable. To overcome this problem, several routes are being proposed for hydrogen production from renewable sources. Recent research points to the photoinduced reforming of biomass as a promising possibility, since it uses solar radiation, an inexhaustible source of energy, and raw materials derived from renewable sources such as biomass and water. Studies in this field are still incipient but quite encouraging. The process combines photocatalytic water splitting with the photodecomposition of organic compounds mediated by an irradiated semiconductor. In this process, the water oxidation reaction is suppressed by a sacrificial electron donor (biomass), as well as the formation of superoxide radicals when the reaction is carried out under anaerobic conditions. The hydrogen production rates from photoinduced reforming are similar or superior to other processes, including biomass hydrolysis and aqueous phase reforming. However, the major researches into hydrogen production by photoinduced reforming of biomass derivatives have focused on TiO2, which limits the portion of solar radiation absorbed as UV light. Thus, the current challenge in this field is the development of narrow band gap semiconductors that are able to drive the photoinduced reform of biomass with visible light, which corresponds to about 43% of solar radiation. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532011000800002 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532011000800002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0103-50532011000800002 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
dc.source.none.fl_str_mv |
Journal of the Brazilian Chemical Society v.22 n.8 2011 reponame:Journal of the Brazilian Chemical Society (Online) instname:Sociedade Brasileira de Química (SBQ) instacron:SBQ |
instname_str |
Sociedade Brasileira de Química (SBQ) |
instacron_str |
SBQ |
institution |
SBQ |
reponame_str |
Journal of the Brazilian Chemical Society (Online) |
collection |
Journal of the Brazilian Chemical Society (Online) |
repository.name.fl_str_mv |
Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ) |
repository.mail.fl_str_mv |
||office@jbcs.sbq.org.br |
_version_ |
1750318172349661184 |