Electrified Water: Liquid, Vapor and Aerosol
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of the Brazilian Chemical Society (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532016000200229 |
Resumo: | Many reports associate electrostatic charge in dielectrics with water, either bulk, finely dispersed in aerosol or as atmospheric vapor. Two widespread but currently controversial assumptions relevant to this topic are the prevalence of electroneutrality and the passive role of water in electrical phenomena, dissipating charge due to its significant electrical conductivity. Early reports from Faraday, Kelvin and their contemporaries also point towards an active role of water as an electrifying agent. Unfortunately, these have been largely ignored or treated as scattered pieces of scientific curiosity, for over a century. New trends in this area have been developing since the late 1990s, due to a number of findings leading to radically new ideas. These derive from the experimental demonstration of widespread occurrence of non-electroneutral water and from charge partition associated with a number of interfacial phenomena, even in electrically shielded environments within grounded enclosures. This is an account on the formation and persistence of electrified water in various natural or anthropic environments, followed by experimental results obtained under well-defined conditions that are revealing different mechanisms for the role of water in charge acquisition and dissipation in dielectrics. |
id |
SBQ-2_b44e0c14ddbfc251d264e6c24bf4d6f2 |
---|---|
oai_identifier_str |
oai:scielo:S0103-50532016000200229 |
network_acronym_str |
SBQ-2 |
network_name_str |
Journal of the Brazilian Chemical Society (Online) |
repository_id_str |
|
spelling |
Electrified Water: Liquid, Vapor and Aerosolvapor electricityelectrified interfaceselectric double layercharge carriersMany reports associate electrostatic charge in dielectrics with water, either bulk, finely dispersed in aerosol or as atmospheric vapor. Two widespread but currently controversial assumptions relevant to this topic are the prevalence of electroneutrality and the passive role of water in electrical phenomena, dissipating charge due to its significant electrical conductivity. Early reports from Faraday, Kelvin and their contemporaries also point towards an active role of water as an electrifying agent. Unfortunately, these have been largely ignored or treated as scattered pieces of scientific curiosity, for over a century. New trends in this area have been developing since the late 1990s, due to a number of findings leading to radically new ideas. These derive from the experimental demonstration of widespread occurrence of non-electroneutral water and from charge partition associated with a number of interfacial phenomena, even in electrically shielded environments within grounded enclosures. This is an account on the formation and persistence of electrified water in various natural or anthropic environments, followed by experimental results obtained under well-defined conditions that are revealing different mechanisms for the role of water in charge acquisition and dissipation in dielectrics.Sociedade Brasileira de Química2016-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532016000200229Journal of the Brazilian Chemical Society v.27 n.2 2016reponame:Journal of the Brazilian Chemical Society (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.5935/0103-5053.20150303info:eu-repo/semantics/openAccessBurgo,Thiago A. L.Galembeck,Fernandoeng2016-02-12T00:00:00Zoai:scielo:S0103-50532016000200229Revistahttp://jbcs.sbq.org.brONGhttps://old.scielo.br/oai/scielo-oai.php||office@jbcs.sbq.org.br1678-47900103-5053opendoar:2016-02-12T00:00Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)false |
dc.title.none.fl_str_mv |
Electrified Water: Liquid, Vapor and Aerosol |
title |
Electrified Water: Liquid, Vapor and Aerosol |
spellingShingle |
Electrified Water: Liquid, Vapor and Aerosol Burgo,Thiago A. L. vapor electricity electrified interfaces electric double layer charge carriers |
title_short |
Electrified Water: Liquid, Vapor and Aerosol |
title_full |
Electrified Water: Liquid, Vapor and Aerosol |
title_fullStr |
Electrified Water: Liquid, Vapor and Aerosol |
title_full_unstemmed |
Electrified Water: Liquid, Vapor and Aerosol |
title_sort |
Electrified Water: Liquid, Vapor and Aerosol |
author |
Burgo,Thiago A. L. |
author_facet |
Burgo,Thiago A. L. Galembeck,Fernando |
author_role |
author |
author2 |
Galembeck,Fernando |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Burgo,Thiago A. L. Galembeck,Fernando |
dc.subject.por.fl_str_mv |
vapor electricity electrified interfaces electric double layer charge carriers |
topic |
vapor electricity electrified interfaces electric double layer charge carriers |
description |
Many reports associate electrostatic charge in dielectrics with water, either bulk, finely dispersed in aerosol or as atmospheric vapor. Two widespread but currently controversial assumptions relevant to this topic are the prevalence of electroneutrality and the passive role of water in electrical phenomena, dissipating charge due to its significant electrical conductivity. Early reports from Faraday, Kelvin and their contemporaries also point towards an active role of water as an electrifying agent. Unfortunately, these have been largely ignored or treated as scattered pieces of scientific curiosity, for over a century. New trends in this area have been developing since the late 1990s, due to a number of findings leading to radically new ideas. These derive from the experimental demonstration of widespread occurrence of non-electroneutral water and from charge partition associated with a number of interfacial phenomena, even in electrically shielded environments within grounded enclosures. This is an account on the formation and persistence of electrified water in various natural or anthropic environments, followed by experimental results obtained under well-defined conditions that are revealing different mechanisms for the role of water in charge acquisition and dissipation in dielectrics. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-02-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532016000200229 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532016000200229 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5935/0103-5053.20150303 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
dc.source.none.fl_str_mv |
Journal of the Brazilian Chemical Society v.27 n.2 2016 reponame:Journal of the Brazilian Chemical Society (Online) instname:Sociedade Brasileira de Química (SBQ) instacron:SBQ |
instname_str |
Sociedade Brasileira de Química (SBQ) |
instacron_str |
SBQ |
institution |
SBQ |
reponame_str |
Journal of the Brazilian Chemical Society (Online) |
collection |
Journal of the Brazilian Chemical Society (Online) |
repository.name.fl_str_mv |
Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ) |
repository.mail.fl_str_mv |
||office@jbcs.sbq.org.br |
_version_ |
1750318177927036928 |