Synthesis of Chelating Agent Free-Solid Phase Extractor (CAF-SPE) Based on New SiO2/Al2O3/SnO2 Ternary Oxide and Application for Online Preconcentration of Pb2+ Coupled with FAAS

Detalhes bibliográficos
Autor(a) principal: Tarley,César R. T.
Data de Publicação: 2018
Outros Autores: Scheel,Guilherme L., Ribeiro,Emerson S., Zappielo,Caroline D., Suquila,Fabio A. C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Chemical Society (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532018000601225
Resumo: A new online solid phase preconcentration method using the new SiO2/Al2O3/SnO2 ternary oxide (designated as SiAlSn) as chelating agent free-solid phase extractor (CAF-SPE) coupled to flame atomic absorption spectrometry (FAAS) for Pb2+ determination at trace levels in different kind of samples is proposed. The solid adsorbent has been characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron miscroscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray fluorescence spectroscopy (XRF) and textural data. The method involves the preconcentration using time-based sampling of Pb2+ solution at pH 4.3 through 100.0 mg of packed adsorbed into a mini-column under flow rate of 4.0 mL min-1 during 5 min. The elution step was accomplished by using 1.0 mol L-1 HCl. A wide range of analytical curve (5.0-400.0 µg L-1), high enrichment factor (40.5), low consumption index (0.5 mL) and low limits of quantification and detection, 5.0 and 1.5 µg L-1, respectively, were obtained with the developed method. Practical application of method was tested on water samples, chocolate powder, Ginkgo biloba and sediment (certified reference material). On the basis of the results, the SiAlSn can be considered an effective adsorbent belonging to the class of CAF-SPE for Pb2+ determination from different matrices.
id SBQ-2_e2c808494bd6a2fb10dc727fb2949892
oai_identifier_str oai:scielo:S0103-50532018000601225
network_acronym_str SBQ-2
network_name_str Journal of the Brazilian Chemical Society (Online)
repository_id_str
spelling Synthesis of Chelating Agent Free-Solid Phase Extractor (CAF-SPE) Based on New SiO2/Al2O3/SnO2 Ternary Oxide and Application for Online Preconcentration of Pb2+ Coupled with FAASleadonline solid phase extractionSiO2/Al2O3/SnO2flame atomic absorption spectrometryfood and water samplesA new online solid phase preconcentration method using the new SiO2/Al2O3/SnO2 ternary oxide (designated as SiAlSn) as chelating agent free-solid phase extractor (CAF-SPE) coupled to flame atomic absorption spectrometry (FAAS) for Pb2+ determination at trace levels in different kind of samples is proposed. The solid adsorbent has been characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron miscroscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray fluorescence spectroscopy (XRF) and textural data. The method involves the preconcentration using time-based sampling of Pb2+ solution at pH 4.3 through 100.0 mg of packed adsorbed into a mini-column under flow rate of 4.0 mL min-1 during 5 min. The elution step was accomplished by using 1.0 mol L-1 HCl. A wide range of analytical curve (5.0-400.0 µg L-1), high enrichment factor (40.5), low consumption index (0.5 mL) and low limits of quantification and detection, 5.0 and 1.5 µg L-1, respectively, were obtained with the developed method. Practical application of method was tested on water samples, chocolate powder, Ginkgo biloba and sediment (certified reference material). On the basis of the results, the SiAlSn can be considered an effective adsorbent belonging to the class of CAF-SPE for Pb2+ determination from different matrices.Sociedade Brasileira de Química2018-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532018000601225Journal of the Brazilian Chemical Society v.29 n.6 2018reponame:Journal of the Brazilian Chemical Society (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.21577/0103-5053.20170218info:eu-repo/semantics/openAccessTarley,César R. T.Scheel,Guilherme L.Ribeiro,Emerson S.Zappielo,Caroline D.Suquila,Fabio A. C.eng2018-05-18T00:00:00Zoai:scielo:S0103-50532018000601225Revistahttp://jbcs.sbq.org.brONGhttps://old.scielo.br/oai/scielo-oai.php||office@jbcs.sbq.org.br1678-47900103-5053opendoar:2018-05-18T00:00Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)false
dc.title.none.fl_str_mv Synthesis of Chelating Agent Free-Solid Phase Extractor (CAF-SPE) Based on New SiO2/Al2O3/SnO2 Ternary Oxide and Application for Online Preconcentration of Pb2+ Coupled with FAAS
title Synthesis of Chelating Agent Free-Solid Phase Extractor (CAF-SPE) Based on New SiO2/Al2O3/SnO2 Ternary Oxide and Application for Online Preconcentration of Pb2+ Coupled with FAAS
spellingShingle Synthesis of Chelating Agent Free-Solid Phase Extractor (CAF-SPE) Based on New SiO2/Al2O3/SnO2 Ternary Oxide and Application for Online Preconcentration of Pb2+ Coupled with FAAS
Tarley,César R. T.
lead
online solid phase extraction
SiO2/Al2O3/SnO2
flame atomic absorption spectrometry
food and water samples
title_short Synthesis of Chelating Agent Free-Solid Phase Extractor (CAF-SPE) Based on New SiO2/Al2O3/SnO2 Ternary Oxide and Application for Online Preconcentration of Pb2+ Coupled with FAAS
title_full Synthesis of Chelating Agent Free-Solid Phase Extractor (CAF-SPE) Based on New SiO2/Al2O3/SnO2 Ternary Oxide and Application for Online Preconcentration of Pb2+ Coupled with FAAS
title_fullStr Synthesis of Chelating Agent Free-Solid Phase Extractor (CAF-SPE) Based on New SiO2/Al2O3/SnO2 Ternary Oxide and Application for Online Preconcentration of Pb2+ Coupled with FAAS
title_full_unstemmed Synthesis of Chelating Agent Free-Solid Phase Extractor (CAF-SPE) Based on New SiO2/Al2O3/SnO2 Ternary Oxide and Application for Online Preconcentration of Pb2+ Coupled with FAAS
title_sort Synthesis of Chelating Agent Free-Solid Phase Extractor (CAF-SPE) Based on New SiO2/Al2O3/SnO2 Ternary Oxide and Application for Online Preconcentration of Pb2+ Coupled with FAAS
author Tarley,César R. T.
author_facet Tarley,César R. T.
Scheel,Guilherme L.
Ribeiro,Emerson S.
Zappielo,Caroline D.
Suquila,Fabio A. C.
author_role author
author2 Scheel,Guilherme L.
Ribeiro,Emerson S.
Zappielo,Caroline D.
Suquila,Fabio A. C.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Tarley,César R. T.
Scheel,Guilherme L.
Ribeiro,Emerson S.
Zappielo,Caroline D.
Suquila,Fabio A. C.
dc.subject.por.fl_str_mv lead
online solid phase extraction
SiO2/Al2O3/SnO2
flame atomic absorption spectrometry
food and water samples
topic lead
online solid phase extraction
SiO2/Al2O3/SnO2
flame atomic absorption spectrometry
food and water samples
description A new online solid phase preconcentration method using the new SiO2/Al2O3/SnO2 ternary oxide (designated as SiAlSn) as chelating agent free-solid phase extractor (CAF-SPE) coupled to flame atomic absorption spectrometry (FAAS) for Pb2+ determination at trace levels in different kind of samples is proposed. The solid adsorbent has been characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron miscroscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray fluorescence spectroscopy (XRF) and textural data. The method involves the preconcentration using time-based sampling of Pb2+ solution at pH 4.3 through 100.0 mg of packed adsorbed into a mini-column under flow rate of 4.0 mL min-1 during 5 min. The elution step was accomplished by using 1.0 mol L-1 HCl. A wide range of analytical curve (5.0-400.0 µg L-1), high enrichment factor (40.5), low consumption index (0.5 mL) and low limits of quantification and detection, 5.0 and 1.5 µg L-1, respectively, were obtained with the developed method. Practical application of method was tested on water samples, chocolate powder, Ginkgo biloba and sediment (certified reference material). On the basis of the results, the SiAlSn can be considered an effective adsorbent belonging to the class of CAF-SPE for Pb2+ determination from different matrices.
publishDate 2018
dc.date.none.fl_str_mv 2018-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532018000601225
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532018000601225
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.21577/0103-5053.20170218
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Química
publisher.none.fl_str_mv Sociedade Brasileira de Química
dc.source.none.fl_str_mv Journal of the Brazilian Chemical Society v.29 n.6 2018
reponame:Journal of the Brazilian Chemical Society (Online)
instname:Sociedade Brasileira de Química (SBQ)
instacron:SBQ
instname_str Sociedade Brasileira de Química (SBQ)
instacron_str SBQ
institution SBQ
reponame_str Journal of the Brazilian Chemical Society (Online)
collection Journal of the Brazilian Chemical Society (Online)
repository.name.fl_str_mv Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)
repository.mail.fl_str_mv ||office@jbcs.sbq.org.br
_version_ 1750318180805378048