Electrochemical Investigations of Li2Fe0.8-xMn0.2MxSiO4 (M = Mg2+, Zn2+) Cathodes for Lithium Ion Batteries

Detalhes bibliográficos
Autor(a) principal: Li,Shu-Dan
Data de Publicação: 2016
Outros Autores: Zhao,Yun, Wang,Chen-Yi, Gao,Kun
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Chemical Society (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532016001102011
Resumo: The Mn2+ and Mg2+ (or Zn2+) co-doped Li2Fe0.8-xMn0.2MxSiO4 (x = 0.05 and 0.1) are synthesized by a solid-state reaction route. Compared with the single doped Li2Fe0.8Mn0.2SiO4, the co-doped samples show improved cycling performance. The capacity retention can stay above 50% after 50 cycles, which is significantly higher than 30.4% for Li2Fe0.8Mn0.2SiO4. This phenomenon could be attributed to the increased structural stability caused by the incorporation of the electrochemically inactive M2+ ions. However, except for Li2Fe0.75Mn0.2Mg0.05SiO4, the other samples show decreased capacities, especially in the case of the Mn/Zn co-doping. Further tests indicate that the promotion of Li+ diffusivity may be a key reason for the improved rate and cycling performances. By contrast, the incorporation of Zn2+ impaired the cell performances such as increased internal polarization, hindered charge transfer, decreased Li+ diffusivity. In this work, the Mg2+ with smaller radius seems to be a better choice as the co-doping element at Fe sites than Zn2+.
id SBQ-2_f80a8e78643b6626b657b22fc8628e27
oai_identifier_str oai:scielo:S0103-50532016001102011
network_acronym_str SBQ-2
network_name_str Journal of the Brazilian Chemical Society (Online)
repository_id_str
spelling Electrochemical Investigations of Li2Fe0.8-xMn0.2MxSiO4 (M = Mg2+, Zn2+) Cathodes for Lithium Ion Batterieschemically modified electrodelithium batteryapplied electrochemistrycomposite and nanocomposite materialsThe Mn2+ and Mg2+ (or Zn2+) co-doped Li2Fe0.8-xMn0.2MxSiO4 (x = 0.05 and 0.1) are synthesized by a solid-state reaction route. Compared with the single doped Li2Fe0.8Mn0.2SiO4, the co-doped samples show improved cycling performance. The capacity retention can stay above 50% after 50 cycles, which is significantly higher than 30.4% for Li2Fe0.8Mn0.2SiO4. This phenomenon could be attributed to the increased structural stability caused by the incorporation of the electrochemically inactive M2+ ions. However, except for Li2Fe0.75Mn0.2Mg0.05SiO4, the other samples show decreased capacities, especially in the case of the Mn/Zn co-doping. Further tests indicate that the promotion of Li+ diffusivity may be a key reason for the improved rate and cycling performances. By contrast, the incorporation of Zn2+ impaired the cell performances such as increased internal polarization, hindered charge transfer, decreased Li+ diffusivity. In this work, the Mg2+ with smaller radius seems to be a better choice as the co-doping element at Fe sites than Zn2+.Sociedade Brasileira de Química2016-11-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532016001102011Journal of the Brazilian Chemical Society v.27 n.11 2016reponame:Journal of the Brazilian Chemical Society (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.5935/0103-5053.20160091info:eu-repo/semantics/openAccessLi,Shu-DanZhao,YunWang,Chen-YiGao,Kuneng2016-11-04T00:00:00Zoai:scielo:S0103-50532016001102011Revistahttp://jbcs.sbq.org.brONGhttps://old.scielo.br/oai/scielo-oai.php||office@jbcs.sbq.org.br1678-47900103-5053opendoar:2016-11-04T00:00Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)false
dc.title.none.fl_str_mv Electrochemical Investigations of Li2Fe0.8-xMn0.2MxSiO4 (M = Mg2+, Zn2+) Cathodes for Lithium Ion Batteries
title Electrochemical Investigations of Li2Fe0.8-xMn0.2MxSiO4 (M = Mg2+, Zn2+) Cathodes for Lithium Ion Batteries
spellingShingle Electrochemical Investigations of Li2Fe0.8-xMn0.2MxSiO4 (M = Mg2+, Zn2+) Cathodes for Lithium Ion Batteries
Li,Shu-Dan
chemically modified electrode
lithium battery
applied electrochemistry
composite and nanocomposite materials
title_short Electrochemical Investigations of Li2Fe0.8-xMn0.2MxSiO4 (M = Mg2+, Zn2+) Cathodes for Lithium Ion Batteries
title_full Electrochemical Investigations of Li2Fe0.8-xMn0.2MxSiO4 (M = Mg2+, Zn2+) Cathodes for Lithium Ion Batteries
title_fullStr Electrochemical Investigations of Li2Fe0.8-xMn0.2MxSiO4 (M = Mg2+, Zn2+) Cathodes for Lithium Ion Batteries
title_full_unstemmed Electrochemical Investigations of Li2Fe0.8-xMn0.2MxSiO4 (M = Mg2+, Zn2+) Cathodes for Lithium Ion Batteries
title_sort Electrochemical Investigations of Li2Fe0.8-xMn0.2MxSiO4 (M = Mg2+, Zn2+) Cathodes for Lithium Ion Batteries
author Li,Shu-Dan
author_facet Li,Shu-Dan
Zhao,Yun
Wang,Chen-Yi
Gao,Kun
author_role author
author2 Zhao,Yun
Wang,Chen-Yi
Gao,Kun
author2_role author
author
author
dc.contributor.author.fl_str_mv Li,Shu-Dan
Zhao,Yun
Wang,Chen-Yi
Gao,Kun
dc.subject.por.fl_str_mv chemically modified electrode
lithium battery
applied electrochemistry
composite and nanocomposite materials
topic chemically modified electrode
lithium battery
applied electrochemistry
composite and nanocomposite materials
description The Mn2+ and Mg2+ (or Zn2+) co-doped Li2Fe0.8-xMn0.2MxSiO4 (x = 0.05 and 0.1) are synthesized by a solid-state reaction route. Compared with the single doped Li2Fe0.8Mn0.2SiO4, the co-doped samples show improved cycling performance. The capacity retention can stay above 50% after 50 cycles, which is significantly higher than 30.4% for Li2Fe0.8Mn0.2SiO4. This phenomenon could be attributed to the increased structural stability caused by the incorporation of the electrochemically inactive M2+ ions. However, except for Li2Fe0.75Mn0.2Mg0.05SiO4, the other samples show decreased capacities, especially in the case of the Mn/Zn co-doping. Further tests indicate that the promotion of Li+ diffusivity may be a key reason for the improved rate and cycling performances. By contrast, the incorporation of Zn2+ impaired the cell performances such as increased internal polarization, hindered charge transfer, decreased Li+ diffusivity. In this work, the Mg2+ with smaller radius seems to be a better choice as the co-doping element at Fe sites than Zn2+.
publishDate 2016
dc.date.none.fl_str_mv 2016-11-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532016001102011
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532016001102011
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5935/0103-5053.20160091
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Química
publisher.none.fl_str_mv Sociedade Brasileira de Química
dc.source.none.fl_str_mv Journal of the Brazilian Chemical Society v.27 n.11 2016
reponame:Journal of the Brazilian Chemical Society (Online)
instname:Sociedade Brasileira de Química (SBQ)
instacron:SBQ
instname_str Sociedade Brasileira de Química (SBQ)
instacron_str SBQ
institution SBQ
reponame_str Journal of the Brazilian Chemical Society (Online)
collection Journal of the Brazilian Chemical Society (Online)
repository.name.fl_str_mv Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)
repository.mail.fl_str_mv ||office@jbcs.sbq.org.br
_version_ 1750318178787917824