Surface Characterization and Electrocatalytic Properties of the Ti/Ir0.3Ti(0.7-x)Pb x O2-Coated Electrodes for Oxygen Evolution Reaction in Acidic Media

Detalhes bibliográficos
Autor(a) principal: Oliveira-Sousa,Adriana de
Data de Publicação: 2002
Outros Autores: Lima-Neto,Pedro de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Chemical Society (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532002000200013
Resumo: In this work a systematic investigation was carried out of the surface characterization and electrocatalytic activity of Ti/Ir0.3Ti(0.7-x)Pb x O2-coated electrodes (0 <= x <= 0.7), using the oxygen evolution reaction (OER) in 0.5 mol dm-3 H2SO4 as model. The electrodes were prepared by thermal decomposition of IrCl3, TiCl3 and Pb(NO3)2 at 600 °C for 1 h using Ti as support. X-ray diffraction shows that the layers are crystalline and that the corresponding metal oxides are present. The surface morphology of the samples, before and after use under extensive oxygen evolution (Tafel experiment), was characterized by Scanning Electron Microscopy and the micrograph analyses show that the OER promotes the dissolution of the oxide layer. The redox processes occurring on the surface were characterized by cyclic voltammetry at 20 mV s-1 in 0.5 mol dm-3 aqueous H2SO4, at room temperature, and were controlled by the Ir3+/Ir4+ couple. The measured anodic voltammetric charge is related to the active area of the electrode showing that the replacement of TiO2 by PbO2 increases the surface area with the higher value being at 50 mol% PbO2. After oxygen evolution, the surface area increases slightly. Tafel slopes are independent of Pb content with the values around 60 mV decade-1, which suggest that only Ir sites are active for OER. The values of normalized current (i/q a) show some inhibition of the OER as TiO2 is replaced by PbO2 suggesting that PbO2, can be a good choice, with potential to improve the selectivity of the system. The reaction order with respect to H+ ion is zero at constant overpotential and ionic strength. The values of Tafel slope and reaction order indicate that a single reaction mechanism is operating.
id SBQ-2_fc624245c221d1648774984def77862e
oai_identifier_str oai:scielo:S0103-50532002000200013
network_acronym_str SBQ-2
network_name_str Journal of the Brazilian Chemical Society (Online)
repository_id_str
spelling Surface Characterization and Electrocatalytic Properties of the Ti/Ir0.3Ti(0.7-x)Pb x O2-Coated Electrodes for Oxygen Evolution Reaction in Acidic Mediaoxygen evolution reactionelectrocatalysisiridium dioxide electrodeslead oxideIn this work a systematic investigation was carried out of the surface characterization and electrocatalytic activity of Ti/Ir0.3Ti(0.7-x)Pb x O2-coated electrodes (0 <= x <= 0.7), using the oxygen evolution reaction (OER) in 0.5 mol dm-3 H2SO4 as model. The electrodes were prepared by thermal decomposition of IrCl3, TiCl3 and Pb(NO3)2 at 600 °C for 1 h using Ti as support. X-ray diffraction shows that the layers are crystalline and that the corresponding metal oxides are present. The surface morphology of the samples, before and after use under extensive oxygen evolution (Tafel experiment), was characterized by Scanning Electron Microscopy and the micrograph analyses show that the OER promotes the dissolution of the oxide layer. The redox processes occurring on the surface were characterized by cyclic voltammetry at 20 mV s-1 in 0.5 mol dm-3 aqueous H2SO4, at room temperature, and were controlled by the Ir3+/Ir4+ couple. The measured anodic voltammetric charge is related to the active area of the electrode showing that the replacement of TiO2 by PbO2 increases the surface area with the higher value being at 50 mol% PbO2. After oxygen evolution, the surface area increases slightly. Tafel slopes are independent of Pb content with the values around 60 mV decade-1, which suggest that only Ir sites are active for OER. The values of normalized current (i/q a) show some inhibition of the OER as TiO2 is replaced by PbO2 suggesting that PbO2, can be a good choice, with potential to improve the selectivity of the system. The reaction order with respect to H+ ion is zero at constant overpotential and ionic strength. The values of Tafel slope and reaction order indicate that a single reaction mechanism is operating.Sociedade Brasileira de Química2002-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532002000200013Journal of the Brazilian Chemical Society v.13 n.2 2002reponame:Journal of the Brazilian Chemical Society (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.1590/S0103-50532002000200013info:eu-repo/semantics/openAccessOliveira-Sousa,Adriana deLima-Neto,Pedro deeng2002-06-25T00:00:00Zoai:scielo:S0103-50532002000200013Revistahttp://jbcs.sbq.org.brONGhttps://old.scielo.br/oai/scielo-oai.php||office@jbcs.sbq.org.br1678-47900103-5053opendoar:2002-06-25T00:00Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)false
dc.title.none.fl_str_mv Surface Characterization and Electrocatalytic Properties of the Ti/Ir0.3Ti(0.7-x)Pb x O2-Coated Electrodes for Oxygen Evolution Reaction in Acidic Media
title Surface Characterization and Electrocatalytic Properties of the Ti/Ir0.3Ti(0.7-x)Pb x O2-Coated Electrodes for Oxygen Evolution Reaction in Acidic Media
spellingShingle Surface Characterization and Electrocatalytic Properties of the Ti/Ir0.3Ti(0.7-x)Pb x O2-Coated Electrodes for Oxygen Evolution Reaction in Acidic Media
Oliveira-Sousa,Adriana de
oxygen evolution reaction
electrocatalysis
iridium dioxide electrodes
lead oxide
title_short Surface Characterization and Electrocatalytic Properties of the Ti/Ir0.3Ti(0.7-x)Pb x O2-Coated Electrodes for Oxygen Evolution Reaction in Acidic Media
title_full Surface Characterization and Electrocatalytic Properties of the Ti/Ir0.3Ti(0.7-x)Pb x O2-Coated Electrodes for Oxygen Evolution Reaction in Acidic Media
title_fullStr Surface Characterization and Electrocatalytic Properties of the Ti/Ir0.3Ti(0.7-x)Pb x O2-Coated Electrodes for Oxygen Evolution Reaction in Acidic Media
title_full_unstemmed Surface Characterization and Electrocatalytic Properties of the Ti/Ir0.3Ti(0.7-x)Pb x O2-Coated Electrodes for Oxygen Evolution Reaction in Acidic Media
title_sort Surface Characterization and Electrocatalytic Properties of the Ti/Ir0.3Ti(0.7-x)Pb x O2-Coated Electrodes for Oxygen Evolution Reaction in Acidic Media
author Oliveira-Sousa,Adriana de
author_facet Oliveira-Sousa,Adriana de
Lima-Neto,Pedro de
author_role author
author2 Lima-Neto,Pedro de
author2_role author
dc.contributor.author.fl_str_mv Oliveira-Sousa,Adriana de
Lima-Neto,Pedro de
dc.subject.por.fl_str_mv oxygen evolution reaction
electrocatalysis
iridium dioxide electrodes
lead oxide
topic oxygen evolution reaction
electrocatalysis
iridium dioxide electrodes
lead oxide
description In this work a systematic investigation was carried out of the surface characterization and electrocatalytic activity of Ti/Ir0.3Ti(0.7-x)Pb x O2-coated electrodes (0 <= x <= 0.7), using the oxygen evolution reaction (OER) in 0.5 mol dm-3 H2SO4 as model. The electrodes were prepared by thermal decomposition of IrCl3, TiCl3 and Pb(NO3)2 at 600 °C for 1 h using Ti as support. X-ray diffraction shows that the layers are crystalline and that the corresponding metal oxides are present. The surface morphology of the samples, before and after use under extensive oxygen evolution (Tafel experiment), was characterized by Scanning Electron Microscopy and the micrograph analyses show that the OER promotes the dissolution of the oxide layer. The redox processes occurring on the surface were characterized by cyclic voltammetry at 20 mV s-1 in 0.5 mol dm-3 aqueous H2SO4, at room temperature, and were controlled by the Ir3+/Ir4+ couple. The measured anodic voltammetric charge is related to the active area of the electrode showing that the replacement of TiO2 by PbO2 increases the surface area with the higher value being at 50 mol% PbO2. After oxygen evolution, the surface area increases slightly. Tafel slopes are independent of Pb content with the values around 60 mV decade-1, which suggest that only Ir sites are active for OER. The values of normalized current (i/q a) show some inhibition of the OER as TiO2 is replaced by PbO2 suggesting that PbO2, can be a good choice, with potential to improve the selectivity of the system. The reaction order with respect to H+ ion is zero at constant overpotential and ionic strength. The values of Tafel slope and reaction order indicate that a single reaction mechanism is operating.
publishDate 2002
dc.date.none.fl_str_mv 2002-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532002000200013
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532002000200013
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-50532002000200013
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Química
publisher.none.fl_str_mv Sociedade Brasileira de Química
dc.source.none.fl_str_mv Journal of the Brazilian Chemical Society v.13 n.2 2002
reponame:Journal of the Brazilian Chemical Society (Online)
instname:Sociedade Brasileira de Química (SBQ)
instacron:SBQ
instname_str Sociedade Brasileira de Química (SBQ)
instacron_str SBQ
institution SBQ
reponame_str Journal of the Brazilian Chemical Society (Online)
collection Journal of the Brazilian Chemical Society (Online)
repository.name.fl_str_mv Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)
repository.mail.fl_str_mv ||office@jbcs.sbq.org.br
_version_ 1750318164614316032