Quantitative structure-retention relationships analysis of retention index of essential oils
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Química Nova (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422011000200014 |
Resumo: | Genetic algorithm and multiple linear regression (GA-MLR), partial least square (GA-PLS), kernel PLS (GA-KPLS) and Levenberg-Marquardt artificial neural network (L-M ANN) techniques were used to investigate the correlation between retention index (RI) and descriptors for 116 diverse compounds in essential oils of six Stachys species. The correlation coefficient LGO-CV (Q²) between experimental and predicted RI for test set by GA-MLR, GA-PLS, GA-KPLS and L-M ANN was 0.886, 0.912, 0.937 and 0.964, respectively. This is the first research on the QSRR of the essential oil compounds against the RI using the GA-KPLS and L-M ANN. |
id |
SBQ-3_28ec7cfee24f86f0b6772a79dc37e5fa |
---|---|
oai_identifier_str |
oai:scielo:S0100-40422011000200014 |
network_acronym_str |
SBQ-3 |
network_name_str |
Química Nova (Online) |
repository_id_str |
|
spelling |
Quantitative structure-retention relationships analysis of retention index of essential oilsessential oilsgenetic algorithm-kernel partial least squaresLevenberg-Marquardt artificial neural networkGenetic algorithm and multiple linear regression (GA-MLR), partial least square (GA-PLS), kernel PLS (GA-KPLS) and Levenberg-Marquardt artificial neural network (L-M ANN) techniques were used to investigate the correlation between retention index (RI) and descriptors for 116 diverse compounds in essential oils of six Stachys species. The correlation coefficient LGO-CV (Q²) between experimental and predicted RI for test set by GA-MLR, GA-PLS, GA-KPLS and L-M ANN was 0.886, 0.912, 0.937 and 0.964, respectively. This is the first research on the QSRR of the essential oil compounds against the RI using the GA-KPLS and L-M ANN.Sociedade Brasileira de Química2011-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422011000200014Química Nova v.34 n.2 2011reponame:Química Nova (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.1590/S0100-40422011000200014info:eu-repo/semantics/openAccessNoorizadeh,HadiFarmany,AbbasNoorizadeh,Mehrabeng2011-03-14T00:00:00Zoai:scielo:S0100-40422011000200014Revistahttps://www.scielo.br/j/qn/ONGhttps://old.scielo.br/oai/scielo-oai.phpquimicanova@sbq.org.br1678-70640100-4042opendoar:2011-03-14T00:00Química Nova (Online) - Sociedade Brasileira de Química (SBQ)false |
dc.title.none.fl_str_mv |
Quantitative structure-retention relationships analysis of retention index of essential oils |
title |
Quantitative structure-retention relationships analysis of retention index of essential oils |
spellingShingle |
Quantitative structure-retention relationships analysis of retention index of essential oils Noorizadeh,Hadi essential oils genetic algorithm-kernel partial least squares Levenberg-Marquardt artificial neural network |
title_short |
Quantitative structure-retention relationships analysis of retention index of essential oils |
title_full |
Quantitative structure-retention relationships analysis of retention index of essential oils |
title_fullStr |
Quantitative structure-retention relationships analysis of retention index of essential oils |
title_full_unstemmed |
Quantitative structure-retention relationships analysis of retention index of essential oils |
title_sort |
Quantitative structure-retention relationships analysis of retention index of essential oils |
author |
Noorizadeh,Hadi |
author_facet |
Noorizadeh,Hadi Farmany,Abbas Noorizadeh,Mehrab |
author_role |
author |
author2 |
Farmany,Abbas Noorizadeh,Mehrab |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Noorizadeh,Hadi Farmany,Abbas Noorizadeh,Mehrab |
dc.subject.por.fl_str_mv |
essential oils genetic algorithm-kernel partial least squares Levenberg-Marquardt artificial neural network |
topic |
essential oils genetic algorithm-kernel partial least squares Levenberg-Marquardt artificial neural network |
description |
Genetic algorithm and multiple linear regression (GA-MLR), partial least square (GA-PLS), kernel PLS (GA-KPLS) and Levenberg-Marquardt artificial neural network (L-M ANN) techniques were used to investigate the correlation between retention index (RI) and descriptors for 116 diverse compounds in essential oils of six Stachys species. The correlation coefficient LGO-CV (Q²) between experimental and predicted RI for test set by GA-MLR, GA-PLS, GA-KPLS and L-M ANN was 0.886, 0.912, 0.937 and 0.964, respectively. This is the first research on the QSRR of the essential oil compounds against the RI using the GA-KPLS and L-M ANN. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422011000200014 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422011000200014 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0100-40422011000200014 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
dc.source.none.fl_str_mv |
Química Nova v.34 n.2 2011 reponame:Química Nova (Online) instname:Sociedade Brasileira de Química (SBQ) instacron:SBQ |
instname_str |
Sociedade Brasileira de Química (SBQ) |
instacron_str |
SBQ |
institution |
SBQ |
reponame_str |
Química Nova (Online) |
collection |
Química Nova (Online) |
repository.name.fl_str_mv |
Química Nova (Online) - Sociedade Brasileira de Química (SBQ) |
repository.mail.fl_str_mv |
quimicanova@sbq.org.br |
_version_ |
1750318111835291648 |