ESTUDO CINÉTICO DE DECOMPOSIÇÃO TÉRMICA DE ESPUMAS RÍGIDAS DE POLIURETANO POR REDE NEURAL ARTIFICIAL

Detalhes bibliográficos
Autor(a) principal: Ferreira,Bárbara D. L.
Data de Publicação: 2017
Outros Autores: Silva,Virgínia R., Jacobsem,Bruna Berger, Yoshida,Maria Irene, Sebastiao,Rita C. O.
Tipo de documento: Artigo
Idioma: por
Título da fonte: Química Nova (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422017001001149
Resumo: Kinetic models of solid thermal decomposition are traditionally used for individual fit of isothermal experimental data. However, this methodology presents unacceptable errors in some regions of the data. To solve this problem, a neural network was adopted in this work. The implemented algorithm uses the rate constants as predetermined weights between the input and intermediate layer and kinetic models as activation functions of neurons in the hidden layer. The contribution of each model in the overall fit of experimental data is calculated as the weights between the intermediate and output layer. In this way, the phenomenon is better described as a sum of kinetic processes. Two rigid polyurethane foam samples: loaded with Al2O3 and no inorganic filler were used in this work. The R3 and D2 models described the thermal decomposition kinetic process for all temperatures for both foams with smaller residual error. However, the network, combining the kinetic models, presented residual errors on average 102 times lower compared to these individual models. The determined activation energy is 12.44 kJ mol-1 higher for the loaded foam. This result corroborates the use of this material as flame retardant, even with the presence of a small amount of charge in its structure.
id SBQ-3_29640152b26a5633bdc950508b462f47
oai_identifier_str oai:scielo:S0100-40422017001001149
network_acronym_str SBQ-3
network_name_str Química Nova (Online)
repository_id_str
spelling ESTUDO CINÉTICO DE DECOMPOSIÇÃO TÉRMICA DE ESPUMAS RÍGIDAS DE POLIURETANO POR REDE NEURAL ARTIFICIALthermal decompositionrigid polyurethane foamspolyurethaneartificial multilayer neural networkKinetic models of solid thermal decomposition are traditionally used for individual fit of isothermal experimental data. However, this methodology presents unacceptable errors in some regions of the data. To solve this problem, a neural network was adopted in this work. The implemented algorithm uses the rate constants as predetermined weights between the input and intermediate layer and kinetic models as activation functions of neurons in the hidden layer. The contribution of each model in the overall fit of experimental data is calculated as the weights between the intermediate and output layer. In this way, the phenomenon is better described as a sum of kinetic processes. Two rigid polyurethane foam samples: loaded with Al2O3 and no inorganic filler were used in this work. The R3 and D2 models described the thermal decomposition kinetic process for all temperatures for both foams with smaller residual error. However, the network, combining the kinetic models, presented residual errors on average 102 times lower compared to these individual models. The determined activation energy is 12.44 kJ mol-1 higher for the loaded foam. This result corroborates the use of this material as flame retardant, even with the presence of a small amount of charge in its structure.Sociedade Brasileira de Química2017-10-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422017001001149Química Nova v.40 n.10 2017reponame:Química Nova (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.21577/0100-4042.20170128info:eu-repo/semantics/openAccessFerreira,Bárbara D. L.Silva,Virgínia R.Jacobsem,Bruna BergerYoshida,Maria IreneSebastiao,Rita C. O.por2017-12-22T00:00:00Zoai:scielo:S0100-40422017001001149Revistahttps://www.scielo.br/j/qn/ONGhttps://old.scielo.br/oai/scielo-oai.phpquimicanova@sbq.org.br1678-70640100-4042opendoar:2017-12-22T00:00Química Nova (Online) - Sociedade Brasileira de Química (SBQ)false
dc.title.none.fl_str_mv ESTUDO CINÉTICO DE DECOMPOSIÇÃO TÉRMICA DE ESPUMAS RÍGIDAS DE POLIURETANO POR REDE NEURAL ARTIFICIAL
title ESTUDO CINÉTICO DE DECOMPOSIÇÃO TÉRMICA DE ESPUMAS RÍGIDAS DE POLIURETANO POR REDE NEURAL ARTIFICIAL
spellingShingle ESTUDO CINÉTICO DE DECOMPOSIÇÃO TÉRMICA DE ESPUMAS RÍGIDAS DE POLIURETANO POR REDE NEURAL ARTIFICIAL
Ferreira,Bárbara D. L.
thermal decomposition
rigid polyurethane foams
polyurethane
artificial multilayer neural network
title_short ESTUDO CINÉTICO DE DECOMPOSIÇÃO TÉRMICA DE ESPUMAS RÍGIDAS DE POLIURETANO POR REDE NEURAL ARTIFICIAL
title_full ESTUDO CINÉTICO DE DECOMPOSIÇÃO TÉRMICA DE ESPUMAS RÍGIDAS DE POLIURETANO POR REDE NEURAL ARTIFICIAL
title_fullStr ESTUDO CINÉTICO DE DECOMPOSIÇÃO TÉRMICA DE ESPUMAS RÍGIDAS DE POLIURETANO POR REDE NEURAL ARTIFICIAL
title_full_unstemmed ESTUDO CINÉTICO DE DECOMPOSIÇÃO TÉRMICA DE ESPUMAS RÍGIDAS DE POLIURETANO POR REDE NEURAL ARTIFICIAL
title_sort ESTUDO CINÉTICO DE DECOMPOSIÇÃO TÉRMICA DE ESPUMAS RÍGIDAS DE POLIURETANO POR REDE NEURAL ARTIFICIAL
author Ferreira,Bárbara D. L.
author_facet Ferreira,Bárbara D. L.
Silva,Virgínia R.
Jacobsem,Bruna Berger
Yoshida,Maria Irene
Sebastiao,Rita C. O.
author_role author
author2 Silva,Virgínia R.
Jacobsem,Bruna Berger
Yoshida,Maria Irene
Sebastiao,Rita C. O.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Ferreira,Bárbara D. L.
Silva,Virgínia R.
Jacobsem,Bruna Berger
Yoshida,Maria Irene
Sebastiao,Rita C. O.
dc.subject.por.fl_str_mv thermal decomposition
rigid polyurethane foams
polyurethane
artificial multilayer neural network
topic thermal decomposition
rigid polyurethane foams
polyurethane
artificial multilayer neural network
description Kinetic models of solid thermal decomposition are traditionally used for individual fit of isothermal experimental data. However, this methodology presents unacceptable errors in some regions of the data. To solve this problem, a neural network was adopted in this work. The implemented algorithm uses the rate constants as predetermined weights between the input and intermediate layer and kinetic models as activation functions of neurons in the hidden layer. The contribution of each model in the overall fit of experimental data is calculated as the weights between the intermediate and output layer. In this way, the phenomenon is better described as a sum of kinetic processes. Two rigid polyurethane foam samples: loaded with Al2O3 and no inorganic filler were used in this work. The R3 and D2 models described the thermal decomposition kinetic process for all temperatures for both foams with smaller residual error. However, the network, combining the kinetic models, presented residual errors on average 102 times lower compared to these individual models. The determined activation energy is 12.44 kJ mol-1 higher for the loaded foam. This result corroborates the use of this material as flame retardant, even with the presence of a small amount of charge in its structure.
publishDate 2017
dc.date.none.fl_str_mv 2017-10-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422017001001149
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422017001001149
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv 10.21577/0100-4042.20170128
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Química
publisher.none.fl_str_mv Sociedade Brasileira de Química
dc.source.none.fl_str_mv Química Nova v.40 n.10 2017
reponame:Química Nova (Online)
instname:Sociedade Brasileira de Química (SBQ)
instacron:SBQ
instname_str Sociedade Brasileira de Química (SBQ)
instacron_str SBQ
institution SBQ
reponame_str Química Nova (Online)
collection Química Nova (Online)
repository.name.fl_str_mv Química Nova (Online) - Sociedade Brasileira de Química (SBQ)
repository.mail.fl_str_mv quimicanova@sbq.org.br
_version_ 1750318118739116032