ESTUDO CINÉTICO DE DECOMPOSIÇÃO TÉRMICA DE ESPUMAS RÍGIDAS DE POLIURETANO POR REDE NEURAL ARTIFICIAL
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Química Nova (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422017001001149 |
Resumo: | Kinetic models of solid thermal decomposition are traditionally used for individual fit of isothermal experimental data. However, this methodology presents unacceptable errors in some regions of the data. To solve this problem, a neural network was adopted in this work. The implemented algorithm uses the rate constants as predetermined weights between the input and intermediate layer and kinetic models as activation functions of neurons in the hidden layer. The contribution of each model in the overall fit of experimental data is calculated as the weights between the intermediate and output layer. In this way, the phenomenon is better described as a sum of kinetic processes. Two rigid polyurethane foam samples: loaded with Al2O3 and no inorganic filler were used in this work. The R3 and D2 models described the thermal decomposition kinetic process for all temperatures for both foams with smaller residual error. However, the network, combining the kinetic models, presented residual errors on average 102 times lower compared to these individual models. The determined activation energy is 12.44 kJ mol-1 higher for the loaded foam. This result corroborates the use of this material as flame retardant, even with the presence of a small amount of charge in its structure. |
id |
SBQ-3_29640152b26a5633bdc950508b462f47 |
---|---|
oai_identifier_str |
oai:scielo:S0100-40422017001001149 |
network_acronym_str |
SBQ-3 |
network_name_str |
Química Nova (Online) |
repository_id_str |
|
spelling |
ESTUDO CINÉTICO DE DECOMPOSIÇÃO TÉRMICA DE ESPUMAS RÍGIDAS DE POLIURETANO POR REDE NEURAL ARTIFICIALthermal decompositionrigid polyurethane foamspolyurethaneartificial multilayer neural networkKinetic models of solid thermal decomposition are traditionally used for individual fit of isothermal experimental data. However, this methodology presents unacceptable errors in some regions of the data. To solve this problem, a neural network was adopted in this work. The implemented algorithm uses the rate constants as predetermined weights between the input and intermediate layer and kinetic models as activation functions of neurons in the hidden layer. The contribution of each model in the overall fit of experimental data is calculated as the weights between the intermediate and output layer. In this way, the phenomenon is better described as a sum of kinetic processes. Two rigid polyurethane foam samples: loaded with Al2O3 and no inorganic filler were used in this work. The R3 and D2 models described the thermal decomposition kinetic process for all temperatures for both foams with smaller residual error. However, the network, combining the kinetic models, presented residual errors on average 102 times lower compared to these individual models. The determined activation energy is 12.44 kJ mol-1 higher for the loaded foam. This result corroborates the use of this material as flame retardant, even with the presence of a small amount of charge in its structure.Sociedade Brasileira de Química2017-10-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422017001001149Química Nova v.40 n.10 2017reponame:Química Nova (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.21577/0100-4042.20170128info:eu-repo/semantics/openAccessFerreira,Bárbara D. L.Silva,Virgínia R.Jacobsem,Bruna BergerYoshida,Maria IreneSebastiao,Rita C. O.por2017-12-22T00:00:00Zoai:scielo:S0100-40422017001001149Revistahttps://www.scielo.br/j/qn/ONGhttps://old.scielo.br/oai/scielo-oai.phpquimicanova@sbq.org.br1678-70640100-4042opendoar:2017-12-22T00:00Química Nova (Online) - Sociedade Brasileira de Química (SBQ)false |
dc.title.none.fl_str_mv |
ESTUDO CINÉTICO DE DECOMPOSIÇÃO TÉRMICA DE ESPUMAS RÍGIDAS DE POLIURETANO POR REDE NEURAL ARTIFICIAL |
title |
ESTUDO CINÉTICO DE DECOMPOSIÇÃO TÉRMICA DE ESPUMAS RÍGIDAS DE POLIURETANO POR REDE NEURAL ARTIFICIAL |
spellingShingle |
ESTUDO CINÉTICO DE DECOMPOSIÇÃO TÉRMICA DE ESPUMAS RÍGIDAS DE POLIURETANO POR REDE NEURAL ARTIFICIAL Ferreira,Bárbara D. L. thermal decomposition rigid polyurethane foams polyurethane artificial multilayer neural network |
title_short |
ESTUDO CINÉTICO DE DECOMPOSIÇÃO TÉRMICA DE ESPUMAS RÍGIDAS DE POLIURETANO POR REDE NEURAL ARTIFICIAL |
title_full |
ESTUDO CINÉTICO DE DECOMPOSIÇÃO TÉRMICA DE ESPUMAS RÍGIDAS DE POLIURETANO POR REDE NEURAL ARTIFICIAL |
title_fullStr |
ESTUDO CINÉTICO DE DECOMPOSIÇÃO TÉRMICA DE ESPUMAS RÍGIDAS DE POLIURETANO POR REDE NEURAL ARTIFICIAL |
title_full_unstemmed |
ESTUDO CINÉTICO DE DECOMPOSIÇÃO TÉRMICA DE ESPUMAS RÍGIDAS DE POLIURETANO POR REDE NEURAL ARTIFICIAL |
title_sort |
ESTUDO CINÉTICO DE DECOMPOSIÇÃO TÉRMICA DE ESPUMAS RÍGIDAS DE POLIURETANO POR REDE NEURAL ARTIFICIAL |
author |
Ferreira,Bárbara D. L. |
author_facet |
Ferreira,Bárbara D. L. Silva,Virgínia R. Jacobsem,Bruna Berger Yoshida,Maria Irene Sebastiao,Rita C. O. |
author_role |
author |
author2 |
Silva,Virgínia R. Jacobsem,Bruna Berger Yoshida,Maria Irene Sebastiao,Rita C. O. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Ferreira,Bárbara D. L. Silva,Virgínia R. Jacobsem,Bruna Berger Yoshida,Maria Irene Sebastiao,Rita C. O. |
dc.subject.por.fl_str_mv |
thermal decomposition rigid polyurethane foams polyurethane artificial multilayer neural network |
topic |
thermal decomposition rigid polyurethane foams polyurethane artificial multilayer neural network |
description |
Kinetic models of solid thermal decomposition are traditionally used for individual fit of isothermal experimental data. However, this methodology presents unacceptable errors in some regions of the data. To solve this problem, a neural network was adopted in this work. The implemented algorithm uses the rate constants as predetermined weights between the input and intermediate layer and kinetic models as activation functions of neurons in the hidden layer. The contribution of each model in the overall fit of experimental data is calculated as the weights between the intermediate and output layer. In this way, the phenomenon is better described as a sum of kinetic processes. Two rigid polyurethane foam samples: loaded with Al2O3 and no inorganic filler were used in this work. The R3 and D2 models described the thermal decomposition kinetic process for all temperatures for both foams with smaller residual error. However, the network, combining the kinetic models, presented residual errors on average 102 times lower compared to these individual models. The determined activation energy is 12.44 kJ mol-1 higher for the loaded foam. This result corroborates the use of this material as flame retardant, even with the presence of a small amount of charge in its structure. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422017001001149 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422017001001149 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
10.21577/0100-4042.20170128 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
dc.source.none.fl_str_mv |
Química Nova v.40 n.10 2017 reponame:Química Nova (Online) instname:Sociedade Brasileira de Química (SBQ) instacron:SBQ |
instname_str |
Sociedade Brasileira de Química (SBQ) |
instacron_str |
SBQ |
institution |
SBQ |
reponame_str |
Química Nova (Online) |
collection |
Química Nova (Online) |
repository.name.fl_str_mv |
Química Nova (Online) - Sociedade Brasileira de Química (SBQ) |
repository.mail.fl_str_mv |
quimicanova@sbq.org.br |
_version_ |
1750318118739116032 |