ORBITALS IN GENERAL CHEMISTRY, PART II: MATHEMATICAL REALITIES
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Química Nova (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422021000300348 |
Resumo: | In Part II of a three-part series, we discuss two factors absent from textbooks of general chemistry that are important in a discussion of teaching orbitals. First, atomic orbitals are shown systematically to comprise algebraic formulae in coordinates of not one but four sets (spherical polar, paraboloidal, ellipsoidal, spheroconical coordinates). Each formula has its corresponding shape as a surface of constant amplitude; some visual examples are provided. Second, the argument that molecular structure is incompatible with quantum mechanics is presented. Despite the utility of orbitals as mathematical functions in various calculations, they are intrinsically complicated for the traditional purpose of qualitative explanation of molecular structure. |
id |
SBQ-3_6d003727a4bca2b6a869a7e58e6d0cdf |
---|---|
oai_identifier_str |
oai:scielo:S0100-40422021000300348 |
network_acronym_str |
SBQ-3 |
network_name_str |
Química Nova (Online) |
repository_id_str |
|
spelling |
ORBITALS IN GENERAL CHEMISTRY, PART II: MATHEMATICAL REALITIESteaching general chemistryorbitalsquantum mechanicsmolecular structureIn Part II of a three-part series, we discuss two factors absent from textbooks of general chemistry that are important in a discussion of teaching orbitals. First, atomic orbitals are shown systematically to comprise algebraic formulae in coordinates of not one but four sets (spherical polar, paraboloidal, ellipsoidal, spheroconical coordinates). Each formula has its corresponding shape as a surface of constant amplitude; some visual examples are provided. Second, the argument that molecular structure is incompatible with quantum mechanics is presented. Despite the utility of orbitals as mathematical functions in various calculations, they are intrinsically complicated for the traditional purpose of qualitative explanation of molecular structure.Sociedade Brasileira de Química2021-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422021000300348Química Nova v.44 n.3 2021reponame:Química Nova (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.21577/0100-4042.20170664info:eu-repo/semantics/openAccessLamoureux,GuyOgilvie,John F.eng2021-05-21T00:00:00Zoai:scielo:S0100-40422021000300348Revistahttps://www.scielo.br/j/qn/ONGhttps://old.scielo.br/oai/scielo-oai.phpquimicanova@sbq.org.br1678-70640100-4042opendoar:2021-05-21T00:00Química Nova (Online) - Sociedade Brasileira de Química (SBQ)false |
dc.title.none.fl_str_mv |
ORBITALS IN GENERAL CHEMISTRY, PART II: MATHEMATICAL REALITIES |
title |
ORBITALS IN GENERAL CHEMISTRY, PART II: MATHEMATICAL REALITIES |
spellingShingle |
ORBITALS IN GENERAL CHEMISTRY, PART II: MATHEMATICAL REALITIES Lamoureux,Guy teaching general chemistry orbitals quantum mechanics molecular structure |
title_short |
ORBITALS IN GENERAL CHEMISTRY, PART II: MATHEMATICAL REALITIES |
title_full |
ORBITALS IN GENERAL CHEMISTRY, PART II: MATHEMATICAL REALITIES |
title_fullStr |
ORBITALS IN GENERAL CHEMISTRY, PART II: MATHEMATICAL REALITIES |
title_full_unstemmed |
ORBITALS IN GENERAL CHEMISTRY, PART II: MATHEMATICAL REALITIES |
title_sort |
ORBITALS IN GENERAL CHEMISTRY, PART II: MATHEMATICAL REALITIES |
author |
Lamoureux,Guy |
author_facet |
Lamoureux,Guy Ogilvie,John F. |
author_role |
author |
author2 |
Ogilvie,John F. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Lamoureux,Guy Ogilvie,John F. |
dc.subject.por.fl_str_mv |
teaching general chemistry orbitals quantum mechanics molecular structure |
topic |
teaching general chemistry orbitals quantum mechanics molecular structure |
description |
In Part II of a three-part series, we discuss two factors absent from textbooks of general chemistry that are important in a discussion of teaching orbitals. First, atomic orbitals are shown systematically to comprise algebraic formulae in coordinates of not one but four sets (spherical polar, paraboloidal, ellipsoidal, spheroconical coordinates). Each formula has its corresponding shape as a surface of constant amplitude; some visual examples are provided. Second, the argument that molecular structure is incompatible with quantum mechanics is presented. Despite the utility of orbitals as mathematical functions in various calculations, they are intrinsically complicated for the traditional purpose of qualitative explanation of molecular structure. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422021000300348 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422021000300348 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.21577/0100-4042.20170664 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
dc.source.none.fl_str_mv |
Química Nova v.44 n.3 2021 reponame:Química Nova (Online) instname:Sociedade Brasileira de Química (SBQ) instacron:SBQ |
instname_str |
Sociedade Brasileira de Química (SBQ) |
instacron_str |
SBQ |
institution |
SBQ |
reponame_str |
Química Nova (Online) |
collection |
Química Nova (Online) |
repository.name.fl_str_mv |
Química Nova (Online) - Sociedade Brasileira de Química (SBQ) |
repository.mail.fl_str_mv |
quimicanova@sbq.org.br |
_version_ |
1750318121066954752 |