ORBITALS IN GENERAL CHEMISTRY, PART II: MATHEMATICAL REALITIES

Detalhes bibliográficos
Autor(a) principal: Lamoureux,Guy
Data de Publicação: 2021
Outros Autores: Ogilvie,John F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Química Nova (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422021000300348
Resumo: In Part II of a three-part series, we discuss two factors absent from textbooks of general chemistry that are important in a discussion of teaching orbitals. First, atomic orbitals are shown systematically to comprise algebraic formulae in coordinates of not one but four sets (spherical polar, paraboloidal, ellipsoidal, spheroconical coordinates). Each formula has its corresponding shape as a surface of constant amplitude; some visual examples are provided. Second, the argument that molecular structure is incompatible with quantum mechanics is presented. Despite the utility of orbitals as mathematical functions in various calculations, they are intrinsically complicated for the traditional purpose of qualitative explanation of molecular structure.
id SBQ-3_6d003727a4bca2b6a869a7e58e6d0cdf
oai_identifier_str oai:scielo:S0100-40422021000300348
network_acronym_str SBQ-3
network_name_str Química Nova (Online)
repository_id_str
spelling ORBITALS IN GENERAL CHEMISTRY, PART II: MATHEMATICAL REALITIESteaching general chemistryorbitalsquantum mechanicsmolecular structureIn Part II of a three-part series, we discuss two factors absent from textbooks of general chemistry that are important in a discussion of teaching orbitals. First, atomic orbitals are shown systematically to comprise algebraic formulae in coordinates of not one but four sets (spherical polar, paraboloidal, ellipsoidal, spheroconical coordinates). Each formula has its corresponding shape as a surface of constant amplitude; some visual examples are provided. Second, the argument that molecular structure is incompatible with quantum mechanics is presented. Despite the utility of orbitals as mathematical functions in various calculations, they are intrinsically complicated for the traditional purpose of qualitative explanation of molecular structure.Sociedade Brasileira de Química2021-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422021000300348Química Nova v.44 n.3 2021reponame:Química Nova (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.21577/0100-4042.20170664info:eu-repo/semantics/openAccessLamoureux,GuyOgilvie,John F.eng2021-05-21T00:00:00Zoai:scielo:S0100-40422021000300348Revistahttps://www.scielo.br/j/qn/ONGhttps://old.scielo.br/oai/scielo-oai.phpquimicanova@sbq.org.br1678-70640100-4042opendoar:2021-05-21T00:00Química Nova (Online) - Sociedade Brasileira de Química (SBQ)false
dc.title.none.fl_str_mv ORBITALS IN GENERAL CHEMISTRY, PART II: MATHEMATICAL REALITIES
title ORBITALS IN GENERAL CHEMISTRY, PART II: MATHEMATICAL REALITIES
spellingShingle ORBITALS IN GENERAL CHEMISTRY, PART II: MATHEMATICAL REALITIES
Lamoureux,Guy
teaching general chemistry
orbitals
quantum mechanics
molecular structure
title_short ORBITALS IN GENERAL CHEMISTRY, PART II: MATHEMATICAL REALITIES
title_full ORBITALS IN GENERAL CHEMISTRY, PART II: MATHEMATICAL REALITIES
title_fullStr ORBITALS IN GENERAL CHEMISTRY, PART II: MATHEMATICAL REALITIES
title_full_unstemmed ORBITALS IN GENERAL CHEMISTRY, PART II: MATHEMATICAL REALITIES
title_sort ORBITALS IN GENERAL CHEMISTRY, PART II: MATHEMATICAL REALITIES
author Lamoureux,Guy
author_facet Lamoureux,Guy
Ogilvie,John F.
author_role author
author2 Ogilvie,John F.
author2_role author
dc.contributor.author.fl_str_mv Lamoureux,Guy
Ogilvie,John F.
dc.subject.por.fl_str_mv teaching general chemistry
orbitals
quantum mechanics
molecular structure
topic teaching general chemistry
orbitals
quantum mechanics
molecular structure
description In Part II of a three-part series, we discuss two factors absent from textbooks of general chemistry that are important in a discussion of teaching orbitals. First, atomic orbitals are shown systematically to comprise algebraic formulae in coordinates of not one but four sets (spherical polar, paraboloidal, ellipsoidal, spheroconical coordinates). Each formula has its corresponding shape as a surface of constant amplitude; some visual examples are provided. Second, the argument that molecular structure is incompatible with quantum mechanics is presented. Despite the utility of orbitals as mathematical functions in various calculations, they are intrinsically complicated for the traditional purpose of qualitative explanation of molecular structure.
publishDate 2021
dc.date.none.fl_str_mv 2021-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422021000300348
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422021000300348
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.21577/0100-4042.20170664
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Química
publisher.none.fl_str_mv Sociedade Brasileira de Química
dc.source.none.fl_str_mv Química Nova v.44 n.3 2021
reponame:Química Nova (Online)
instname:Sociedade Brasileira de Química (SBQ)
instacron:SBQ
instname_str Sociedade Brasileira de Química (SBQ)
instacron_str SBQ
institution SBQ
reponame_str Química Nova (Online)
collection Química Nova (Online)
repository.name.fl_str_mv Química Nova (Online) - Sociedade Brasileira de Química (SBQ)
repository.mail.fl_str_mv quimicanova@sbq.org.br
_version_ 1750318121066954752