SELECTIVE HYDROGENOLYSIS OF GLYCEROL TO PROPYLENE GLYCOL IN A CONTINUOUS FLOW TRICKLE BED REACTOR USING COPPER CHROMITE AND Cu/Al2O3 CATALYSTS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Química Nova (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422017000400371 |
Resumo: | The glycerol hydrogenolysis reaction was performed in a continuous flow trickle bed reactor using a water glycerol feed and both copper chromite and Cu/Al2O3 catalysts. The commercial copper chromite had a higher activity than the laboratory prepared Cu/Al2O3 and was used for most of the tests. Propylene glycol was the main product with both catalysts, acetol being the main by-product. It was found that temperature is the main variable influencing the conversion of glycerol. When the state of the glycerol-water reactant mixture was completely liquid, at temperatures lower than 190 ºC, conversion was low and deactivation was observed. At reaction temperatures of 210-230 ºC the conversion of glycerol was complete and the selectivity to propylene glycol was stable at about 60-80% all throughout the reaction time span of 10 h, regardless of the hydrogen pressure level (1 to 20 atm). These optimal values could not be improved significantly by using other different reaction conditions or increasing the catalyst acidity. At higher temperatures (245-250 ºC) the conversion was also 100%. Under reaction conditions at which copper chromite suffered deactivation, light by-products and surface deposits were formed. The deposits could be completely burned at 250 ºC and the catalyst activity fully recovered. |
id |
SBQ-3_96e9c6e5701fab34adf5289927276939 |
---|---|
oai_identifier_str |
oai:scielo:S0100-40422017000400371 |
network_acronym_str |
SBQ-3 |
network_name_str |
Química Nova (Online) |
repository_id_str |
|
spelling |
SELECTIVE HYDROGENOLYSIS OF GLYCEROL TO PROPYLENE GLYCOL IN A CONTINUOUS FLOW TRICKLE BED REACTOR USING COPPER CHROMITE AND Cu/Al2O3 CATALYSTShydrogenolysiscopper chromiteglycerol conversionThe glycerol hydrogenolysis reaction was performed in a continuous flow trickle bed reactor using a water glycerol feed and both copper chromite and Cu/Al2O3 catalysts. The commercial copper chromite had a higher activity than the laboratory prepared Cu/Al2O3 and was used for most of the tests. Propylene glycol was the main product with both catalysts, acetol being the main by-product. It was found that temperature is the main variable influencing the conversion of glycerol. When the state of the glycerol-water reactant mixture was completely liquid, at temperatures lower than 190 ºC, conversion was low and deactivation was observed. At reaction temperatures of 210-230 ºC the conversion of glycerol was complete and the selectivity to propylene glycol was stable at about 60-80% all throughout the reaction time span of 10 h, regardless of the hydrogen pressure level (1 to 20 atm). These optimal values could not be improved significantly by using other different reaction conditions or increasing the catalyst acidity. At higher temperatures (245-250 ºC) the conversion was also 100%. Under reaction conditions at which copper chromite suffered deactivation, light by-products and surface deposits were formed. The deposits could be completely burned at 250 ºC and the catalyst activity fully recovered.Sociedade Brasileira de Química2017-05-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422017000400371Química Nova v.40 n.4 2017reponame:Química Nova (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.21577/0100-4042.20170018info:eu-repo/semantics/openAccessSepúlveda,JorgeManuale,DeboraSantiago,LuciaCarrara,NicolásTorres,GerardoVera,CarlosGoncalves,MaraisaCarvalho,WagnerMandelli,Dalmoeng2017-06-07T00:00:00Zoai:scielo:S0100-40422017000400371Revistahttps://www.scielo.br/j/qn/ONGhttps://old.scielo.br/oai/scielo-oai.phpquimicanova@sbq.org.br1678-70640100-4042opendoar:2017-06-07T00:00Química Nova (Online) - Sociedade Brasileira de Química (SBQ)false |
dc.title.none.fl_str_mv |
SELECTIVE HYDROGENOLYSIS OF GLYCEROL TO PROPYLENE GLYCOL IN A CONTINUOUS FLOW TRICKLE BED REACTOR USING COPPER CHROMITE AND Cu/Al2O3 CATALYSTS |
title |
SELECTIVE HYDROGENOLYSIS OF GLYCEROL TO PROPYLENE GLYCOL IN A CONTINUOUS FLOW TRICKLE BED REACTOR USING COPPER CHROMITE AND Cu/Al2O3 CATALYSTS |
spellingShingle |
SELECTIVE HYDROGENOLYSIS OF GLYCEROL TO PROPYLENE GLYCOL IN A CONTINUOUS FLOW TRICKLE BED REACTOR USING COPPER CHROMITE AND Cu/Al2O3 CATALYSTS Sepúlveda,Jorge hydrogenolysis copper chromite glycerol conversion |
title_short |
SELECTIVE HYDROGENOLYSIS OF GLYCEROL TO PROPYLENE GLYCOL IN A CONTINUOUS FLOW TRICKLE BED REACTOR USING COPPER CHROMITE AND Cu/Al2O3 CATALYSTS |
title_full |
SELECTIVE HYDROGENOLYSIS OF GLYCEROL TO PROPYLENE GLYCOL IN A CONTINUOUS FLOW TRICKLE BED REACTOR USING COPPER CHROMITE AND Cu/Al2O3 CATALYSTS |
title_fullStr |
SELECTIVE HYDROGENOLYSIS OF GLYCEROL TO PROPYLENE GLYCOL IN A CONTINUOUS FLOW TRICKLE BED REACTOR USING COPPER CHROMITE AND Cu/Al2O3 CATALYSTS |
title_full_unstemmed |
SELECTIVE HYDROGENOLYSIS OF GLYCEROL TO PROPYLENE GLYCOL IN A CONTINUOUS FLOW TRICKLE BED REACTOR USING COPPER CHROMITE AND Cu/Al2O3 CATALYSTS |
title_sort |
SELECTIVE HYDROGENOLYSIS OF GLYCEROL TO PROPYLENE GLYCOL IN A CONTINUOUS FLOW TRICKLE BED REACTOR USING COPPER CHROMITE AND Cu/Al2O3 CATALYSTS |
author |
Sepúlveda,Jorge |
author_facet |
Sepúlveda,Jorge Manuale,Debora Santiago,Lucia Carrara,Nicolás Torres,Gerardo Vera,Carlos Goncalves,Maraisa Carvalho,Wagner Mandelli,Dalmo |
author_role |
author |
author2 |
Manuale,Debora Santiago,Lucia Carrara,Nicolás Torres,Gerardo Vera,Carlos Goncalves,Maraisa Carvalho,Wagner Mandelli,Dalmo |
author2_role |
author author author author author author author author |
dc.contributor.author.fl_str_mv |
Sepúlveda,Jorge Manuale,Debora Santiago,Lucia Carrara,Nicolás Torres,Gerardo Vera,Carlos Goncalves,Maraisa Carvalho,Wagner Mandelli,Dalmo |
dc.subject.por.fl_str_mv |
hydrogenolysis copper chromite glycerol conversion |
topic |
hydrogenolysis copper chromite glycerol conversion |
description |
The glycerol hydrogenolysis reaction was performed in a continuous flow trickle bed reactor using a water glycerol feed and both copper chromite and Cu/Al2O3 catalysts. The commercial copper chromite had a higher activity than the laboratory prepared Cu/Al2O3 and was used for most of the tests. Propylene glycol was the main product with both catalysts, acetol being the main by-product. It was found that temperature is the main variable influencing the conversion of glycerol. When the state of the glycerol-water reactant mixture was completely liquid, at temperatures lower than 190 ºC, conversion was low and deactivation was observed. At reaction temperatures of 210-230 ºC the conversion of glycerol was complete and the selectivity to propylene glycol was stable at about 60-80% all throughout the reaction time span of 10 h, regardless of the hydrogen pressure level (1 to 20 atm). These optimal values could not be improved significantly by using other different reaction conditions or increasing the catalyst acidity. At higher temperatures (245-250 ºC) the conversion was also 100%. Under reaction conditions at which copper chromite suffered deactivation, light by-products and surface deposits were formed. The deposits could be completely burned at 250 ºC and the catalyst activity fully recovered. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-05-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422017000400371 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422017000400371 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.21577/0100-4042.20170018 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
dc.source.none.fl_str_mv |
Química Nova v.40 n.4 2017 reponame:Química Nova (Online) instname:Sociedade Brasileira de Química (SBQ) instacron:SBQ |
instname_str |
Sociedade Brasileira de Química (SBQ) |
instacron_str |
SBQ |
institution |
SBQ |
reponame_str |
Química Nova (Online) |
collection |
Química Nova (Online) |
repository.name.fl_str_mv |
Química Nova (Online) - Sociedade Brasileira de Química (SBQ) |
repository.mail.fl_str_mv |
quimicanova@sbq.org.br |
_version_ |
1750318118023987200 |