A tabela periódica dos elementos químicos prevista por redes neurais artificiais de Kohonen
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Química Nova (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422008000500040 |
Resumo: | Although several chemical elements were not known by end of the 18th century, Mendeleyev came up with an astonishing achievement: the periodic table of elements. He was not only able to predict the existence of (then) new elements but also to provide accurate estimates of their chemical and physical properties. This is certainly a relevant example of the human intelligence. Here, we intend to shed some light on the following question: Can an artificial intelligence system yield a classification of the elements that resembles, in some sense, the periodic table? To achieve our goal, we have fed a self-organized map (SOM) with information available at Mendeleyev's time. Our results show that similar elements tend to form individual clusters. Thus, SOM generates clusters of halogens, alkaline metals and transition metals that show a similarity with the periodic table of elements. |
id |
SBQ-3_cb4f22fe8b4e81e2e27fcabf27301cbe |
---|---|
oai_identifier_str |
oai:scielo:S0100-40422008000500040 |
network_acronym_str |
SBQ-3 |
network_name_str |
Química Nova (Online) |
repository_id_str |
|
spelling |
A tabela periódica dos elementos químicos prevista por redes neurais artificiais de Kohonenperiodic tableneural networksKohonen neural networkAlthough several chemical elements were not known by end of the 18th century, Mendeleyev came up with an astonishing achievement: the periodic table of elements. He was not only able to predict the existence of (then) new elements but also to provide accurate estimates of their chemical and physical properties. This is certainly a relevant example of the human intelligence. Here, we intend to shed some light on the following question: Can an artificial intelligence system yield a classification of the elements that resembles, in some sense, the periodic table? To achieve our goal, we have fed a self-organized map (SOM) with information available at Mendeleyev's time. Our results show that similar elements tend to form individual clusters. Thus, SOM generates clusters of halogens, alkaline metals and transition metals that show a similarity with the periodic table of elements.Sociedade Brasileira de Química2008-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422008000500040Química Nova v.31 n.5 2008reponame:Química Nova (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.1590/S0100-40422008000500040info:eu-repo/semantics/openAccessLemes,Maurício RuvPino Júnior,Arnaldo Dalpor2008-09-12T00:00:00Zoai:scielo:S0100-40422008000500040Revistahttps://www.scielo.br/j/qn/ONGhttps://old.scielo.br/oai/scielo-oai.phpquimicanova@sbq.org.br1678-70640100-4042opendoar:2008-09-12T00:00Química Nova (Online) - Sociedade Brasileira de Química (SBQ)false |
dc.title.none.fl_str_mv |
A tabela periódica dos elementos químicos prevista por redes neurais artificiais de Kohonen |
title |
A tabela periódica dos elementos químicos prevista por redes neurais artificiais de Kohonen |
spellingShingle |
A tabela periódica dos elementos químicos prevista por redes neurais artificiais de Kohonen Lemes,Maurício Ruv periodic table neural networks Kohonen neural network |
title_short |
A tabela periódica dos elementos químicos prevista por redes neurais artificiais de Kohonen |
title_full |
A tabela periódica dos elementos químicos prevista por redes neurais artificiais de Kohonen |
title_fullStr |
A tabela periódica dos elementos químicos prevista por redes neurais artificiais de Kohonen |
title_full_unstemmed |
A tabela periódica dos elementos químicos prevista por redes neurais artificiais de Kohonen |
title_sort |
A tabela periódica dos elementos químicos prevista por redes neurais artificiais de Kohonen |
author |
Lemes,Maurício Ruv |
author_facet |
Lemes,Maurício Ruv Pino Júnior,Arnaldo Dal |
author_role |
author |
author2 |
Pino Júnior,Arnaldo Dal |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Lemes,Maurício Ruv Pino Júnior,Arnaldo Dal |
dc.subject.por.fl_str_mv |
periodic table neural networks Kohonen neural network |
topic |
periodic table neural networks Kohonen neural network |
description |
Although several chemical elements were not known by end of the 18th century, Mendeleyev came up with an astonishing achievement: the periodic table of elements. He was not only able to predict the existence of (then) new elements but also to provide accurate estimates of their chemical and physical properties. This is certainly a relevant example of the human intelligence. Here, we intend to shed some light on the following question: Can an artificial intelligence system yield a classification of the elements that resembles, in some sense, the periodic table? To achieve our goal, we have fed a self-organized map (SOM) with information available at Mendeleyev's time. Our results show that similar elements tend to form individual clusters. Thus, SOM generates clusters of halogens, alkaline metals and transition metals that show a similarity with the periodic table of elements. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422008000500040 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422008000500040 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
10.1590/S0100-40422008000500040 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
publisher.none.fl_str_mv |
Sociedade Brasileira de Química |
dc.source.none.fl_str_mv |
Química Nova v.31 n.5 2008 reponame:Química Nova (Online) instname:Sociedade Brasileira de Química (SBQ) instacron:SBQ |
instname_str |
Sociedade Brasileira de Química (SBQ) |
instacron_str |
SBQ |
institution |
SBQ |
reponame_str |
Química Nova (Online) |
collection |
Química Nova (Online) |
repository.name.fl_str_mv |
Química Nova (Online) - Sociedade Brasileira de Química (SBQ) |
repository.mail.fl_str_mv |
quimicanova@sbq.org.br |
_version_ |
1750318107676639232 |