A tabela periódica dos elementos químicos prevista por redes neurais artificiais de Kohonen

Detalhes bibliográficos
Autor(a) principal: Lemes,Maurício Ruv
Data de Publicação: 2008
Outros Autores: Pino Júnior,Arnaldo Dal
Tipo de documento: Artigo
Idioma: por
Título da fonte: Química Nova (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422008000500040
Resumo: Although several chemical elements were not known by end of the 18th century, Mendeleyev came up with an astonishing achievement: the periodic table of elements. He was not only able to predict the existence of (then) new elements but also to provide accurate estimates of their chemical and physical properties. This is certainly a relevant example of the human intelligence. Here, we intend to shed some light on the following question: Can an artificial intelligence system yield a classification of the elements that resembles, in some sense, the periodic table? To achieve our goal, we have fed a self-organized map (SOM) with information available at Mendeleyev's time. Our results show that similar elements tend to form individual clusters. Thus, SOM generates clusters of halogens, alkaline metals and transition metals that show a similarity with the periodic table of elements.
id SBQ-3_cb4f22fe8b4e81e2e27fcabf27301cbe
oai_identifier_str oai:scielo:S0100-40422008000500040
network_acronym_str SBQ-3
network_name_str Química Nova (Online)
repository_id_str
spelling A tabela periódica dos elementos químicos prevista por redes neurais artificiais de Kohonenperiodic tableneural networksKohonen neural networkAlthough several chemical elements were not known by end of the 18th century, Mendeleyev came up with an astonishing achievement: the periodic table of elements. He was not only able to predict the existence of (then) new elements but also to provide accurate estimates of their chemical and physical properties. This is certainly a relevant example of the human intelligence. Here, we intend to shed some light on the following question: Can an artificial intelligence system yield a classification of the elements that resembles, in some sense, the periodic table? To achieve our goal, we have fed a self-organized map (SOM) with information available at Mendeleyev's time. Our results show that similar elements tend to form individual clusters. Thus, SOM generates clusters of halogens, alkaline metals and transition metals that show a similarity with the periodic table of elements.Sociedade Brasileira de Química2008-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422008000500040Química Nova v.31 n.5 2008reponame:Química Nova (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.1590/S0100-40422008000500040info:eu-repo/semantics/openAccessLemes,Maurício RuvPino Júnior,Arnaldo Dalpor2008-09-12T00:00:00Zoai:scielo:S0100-40422008000500040Revistahttps://www.scielo.br/j/qn/ONGhttps://old.scielo.br/oai/scielo-oai.phpquimicanova@sbq.org.br1678-70640100-4042opendoar:2008-09-12T00:00Química Nova (Online) - Sociedade Brasileira de Química (SBQ)false
dc.title.none.fl_str_mv A tabela periódica dos elementos químicos prevista por redes neurais artificiais de Kohonen
title A tabela periódica dos elementos químicos prevista por redes neurais artificiais de Kohonen
spellingShingle A tabela periódica dos elementos químicos prevista por redes neurais artificiais de Kohonen
Lemes,Maurício Ruv
periodic table
neural networks
Kohonen neural network
title_short A tabela periódica dos elementos químicos prevista por redes neurais artificiais de Kohonen
title_full A tabela periódica dos elementos químicos prevista por redes neurais artificiais de Kohonen
title_fullStr A tabela periódica dos elementos químicos prevista por redes neurais artificiais de Kohonen
title_full_unstemmed A tabela periódica dos elementos químicos prevista por redes neurais artificiais de Kohonen
title_sort A tabela periódica dos elementos químicos prevista por redes neurais artificiais de Kohonen
author Lemes,Maurício Ruv
author_facet Lemes,Maurício Ruv
Pino Júnior,Arnaldo Dal
author_role author
author2 Pino Júnior,Arnaldo Dal
author2_role author
dc.contributor.author.fl_str_mv Lemes,Maurício Ruv
Pino Júnior,Arnaldo Dal
dc.subject.por.fl_str_mv periodic table
neural networks
Kohonen neural network
topic periodic table
neural networks
Kohonen neural network
description Although several chemical elements were not known by end of the 18th century, Mendeleyev came up with an astonishing achievement: the periodic table of elements. He was not only able to predict the existence of (then) new elements but also to provide accurate estimates of their chemical and physical properties. This is certainly a relevant example of the human intelligence. Here, we intend to shed some light on the following question: Can an artificial intelligence system yield a classification of the elements that resembles, in some sense, the periodic table? To achieve our goal, we have fed a self-organized map (SOM) with information available at Mendeleyev's time. Our results show that similar elements tend to form individual clusters. Thus, SOM generates clusters of halogens, alkaline metals and transition metals that show a similarity with the periodic table of elements.
publishDate 2008
dc.date.none.fl_str_mv 2008-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422008000500040
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422008000500040
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv 10.1590/S0100-40422008000500040
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Química
publisher.none.fl_str_mv Sociedade Brasileira de Química
dc.source.none.fl_str_mv Química Nova v.31 n.5 2008
reponame:Química Nova (Online)
instname:Sociedade Brasileira de Química (SBQ)
instacron:SBQ
instname_str Sociedade Brasileira de Química (SBQ)
instacron_str SBQ
institution SBQ
reponame_str Química Nova (Online)
collection Química Nova (Online)
repository.name.fl_str_mv Química Nova (Online) - Sociedade Brasileira de Química (SBQ)
repository.mail.fl_str_mv quimicanova@sbq.org.br
_version_ 1750318107676639232